Bessel-K Function Calculator

Online calculator for calculating the modified Bessel function Kn(x) of the second type


The calculator on this page calculates the modified Bessel function Kn(z) for real numbers. Bessel functions for complex numbers can be found in the complex numbers section.

To calculate, enter the ordinal number and the argument z. Then click the 'Calculate' button. The ordinal number must be an integer and the argument z must be positive.


Bessel-K function calculator

Input
integer orders n
Argument z
Decimal places
Result
Move the mouse over the graphic to display the values

Bessel function Kn(z) of the second kind


The Bessel-K function calculates the modified Bessel function Kn(z) of the second kind. The modified Bessel functions do not exhibit oscillating but rather exponential behavior. Bessel-K (n, z) is a solution of the modified Bessel differential equation.

The result can be a complex number if z is negative and n is a decimal number.

BesselI

Plot of the Bessel-K function with ordinal numbers 0, 1 and 2



Definition of the Bessel functions


Bessel functions of the first kind (Jν)

The Bessel function of the first genus of the nth order is defined as:

\(\displaystyle J_{\nu}(z) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m + \nu + 1)} \left(\frac{z}{2}\right)^{2m + \nu} \)

Here \( \Gamma \) is the gamma function.

At the origin (\( z = 0 \)) these functions are finite for integer values of \( \nu \).
For non-integer values of \( \nu \) there are two linearly independent solutions.
For integer values of \( \nu \) the relationship holds:

\(\displaystyle J_{-\nu}(z) = (-1)^{\nu} J_{\nu}(z) \)

Bessel functions of the second genus (Yν)

The Bessel function of second genus nth order is defined as:

\(\displaystyle Y_{\nu}(z) = \frac{J_{\nu}(z) \cos(\nu \pi) - J_{-\nu}(z)}{\sin(\nu \ pi)} \)

Modified Bessel functions (Iν, Kν)

The modified Bessel function of the first kind of nth order is defined as:

\(\displaystyle I_{\nu}(z) = i^{-\nu} J_{\nu}(iz) \)

The modified Bessel function of the second type nth order is defined as:

\(\displaystyle K_{\nu}(z) = \frac{\pi}{2} \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin(\nu \pi)} \)


IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?