Hyperbolic Tangent (tanh) for Complex Numbers

Calculation of tanh(z) - ratio of sinh to cosh

Tanh Calculator

Hyperbolic Tangent

The hyperbolic tangent tanh(z) is the ratio of sinh to cosh: \(\tanh(z) = \frac{\sinh(z)}{\cosh(z)}\). It is bounded to the interval (-1, 1) for real numbers and has no poles.

Argument z = x + yi
+
i
Calculation Result
tanh(z) =
For real x: -1 < tanh(x) < 1. No poles!

Tanh - Properties

Formula for Complex Numbers
\[\tanh(z) = \frac{\sinh(2x)}{\cosh(2x)+\cos(2y)} + i\frac{\sin(2y)}{\cosh(2x)+\cos(2y)}\]

With z = x + yi

Quotient Representation
\[\tanh(z) = \frac{\sinh(z)}{\cosh(z)}\]
Odd function tanh(-z) = -tanh(z)
Bounded (real) -1 < tanh(x) < 1
Important Properties
  • Odd function: tanh(-z) = -tanh(z)
  • \(1 - \tanh^2(z) = \frac{1}{\cosh^2(z)}\)
  • No poles (smooth)
  • Limits: \(\lim_{x \to \pm\infty} \tanh(x) = \pm 1\)
Relations
  • \(\tanh(z) = \frac{1}{\coth(z)}\)
  • \(\tanh(2z) = \frac{2\tanh(z)}{1+\tanh^2(z)}\)
  • \(\tanh(z \pm w) = \frac{\tanh z \pm \tanh w}{1 \pm \tanh z \tanh w}\)
  • \(\tanh(iz) = i\tan(z)\)

Formulas for Hyperbolic Tangent of Complex Numbers

The hyperbolic tangent tanh(z) of a complex number z = x + yi is the ratio of sinh to cosh and combines hyperbolic with trigonometric functions.

Cartesian Form
\[\tanh(z) = \frac{\sinh(2x)}{\cosh(2x)+\cos(2y)} + i\frac{\sin(2y)}{\cosh(2x)+\cos(2y)}\]

Real part: \(\frac{\sinh(2x)}{\cosh(2x)+\cos(2y)}\)
Imaginary part: \(\frac{\sin(2y)}{\cosh(2x)+\cos(2y)}\)

Quotient Representation
\[\tanh(z) = \frac{\sinh(z)}{\cosh(z)}\]

Ratio of sinh to cosh

Step-by-Step Example

Calculation: tanh(1 + i)
Step 1: Apply formula

z = 1 + i

x = 1, y = 1

2x = 2, 2y = 2

Step 2: Calculate denominator

\(\cosh(2) + \cos(2)\)

\(= 3.762 + (-0.416)\)

\(\approx 3.346\)

Step 3: Calculate real part

\(\text{Re} = \frac{\sinh(2)}{3.346}\)

\(= \frac{3.627}{3.346}\)

\(\approx 1.084\)

Step 4: Calculate imaginary part

\(\text{Im} = \frac{\sin(2)}{3.346}\)

\(= \frac{0.909}{3.346}\)

\(\approx 0.272\)

Step 5: Result

\(\tanh(1 + i) = \text{Re} + i\text{Im}\)

\(\approx 1.084 + 0.272i\)

Observation

Note: \(|\tanh(1 + i)| \approx 1.118 > 1\)! For complex numbers, the magnitude of tanh can be greater than 1 (only for real x is |tanh(x)| < 1).

More Examples

Example 1: tanh(0)

z = 0

\(\tanh(0) = \frac{\sinh(0)}{\cosh(0)}\)

\(= \frac{0}{1} = 0\)

Example 2: tanh(1)

z = 1 (real)

\(\tanh(1) = \frac{e - e^{-1}}{e + e^{-1}}\)

\(\approx 0.762\)

Example 3: tanh(∞)

Limit for x → ∞

\(\lim_{x \to \infty} \tanh(x)\)

\(= 1\)

Example 4: tanh(i)

z = i (purely imaginary)

\(\tanh(i) = i\tan(1)\)

\(\approx 1.557i\)

Example 5: tanh(2)

z = 2 (real)

\(\tanh(2) = \frac{\sinh(2)}{\cosh(2)}\)

\(\approx 0.964\)

Example 6: tanh(-1)

z = -1 (real, negative)

\(\tanh(-1) = -\tanh(1)\) (odd!)

\(\approx -0.762\)

Hyperbolic Tangent - Detailed Description

Definition

The hyperbolic tangent is the ratio of sinh to cosh.

Quotient representation:
\[\tanh(z) = \frac{\sinh(z)}{\cosh(z)}\]

Exponential form:
\[\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}\]

For real numbers:
Range: (-1, 1)
No poles

For Complex Numbers

Calculation with z = x + yi:

\[\tanh(z) = \frac{\sinh(2x)}{\cosh(2x)+\cos(2y)} + i\frac{\sin(2y)}{\cosh(2x)+\cos(2y)}\]

• For complex z, |\tanh(z)| can be > 1
• No poles (smooth function)

Important Properties

  • Odd function: \(\tanh(-z) = -\tanh(z)\)
  • Identity: \(1 - \tanh^2(z) = \frac{1}{\cosh^2(z)}\)
  • Limits: \(\lim_{x \to \pm\infty} \tanh(x) = \pm 1\)
  • Derivative: \(\frac{d}{dz}\tanh(z) = \frac{1}{\cosh^2(z)}\)

Addition Formulas

Sum formula:
\[\tanh(z \pm w) = \frac{\tanh z \pm \tanh w}{1 \pm \tanh z \tanh w}\]
Double argument:
\[\tanh(2z) = \frac{2\tanh(z)}{1+\tanh^2(z)}\]

Relations

• \(\tanh(z) = \frac{1}{\coth(z)}\) (reciprocal)
• \(\tanh(iz) = i\tan(z)\) (hyperbolic ↔ trigonometric)
• \(\tan(iz) = i\tanh(z)\) (inverse)
• \(\tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1}\)

Sigmoid Function

Activation Function

The hyperbolic tangent is a sigmoid function (S-shaped):

Properties:
  • Smooth and differentiable
  • Monotonically increasing
  • Zero point at (0,0)
  • Asymptotes at y = ±1
Inflection points:
  • Maximum slope at x = 0
  • \(\tanh'(0) = 1\)
  • Symmetric about origin

Applications

Neural Networks
  • Activation function
  • Machine learning
  • Deep learning
  • AI algorithms
Physics
  • Relativity theory
  • Solitons
  • Wave equations
  • Nonlinear dynamics
Signal Processing
  • Normalization
  • Limiting
  • Soft clipping
  • Compression
Comparison: tanh vs. tan
tanh(x) - Hyperbolic Tangent:
  • Odd function
  • Range (reall