Beta Functions
Euler's beta functions
Description of the beta function
The function \(Beta\) (Euler's beta function), also Euler's integral type 1 is a mathematical function of two complex numbers. Their definition is:
\(\displaystyle Beta(a,b) = \int_0^1 t^{a-1}(1-t)^{b-1} dt \)
\(Beta\) calculates the beta function for the arguments \(a \) and \(b \). The arguments must be real and 0 or positive.
You can also use a list in one of the parameters.
Syntax
Beta (a, b)
Beispiel
IBeta Function
The function \(IBeta \) calculates the incomplete regulated beta function for the arguments \(a \) and \(b \). The arguments must be real and 0 or positive.
One of the arguments can also be a list of real numbers.
The parameter \(x\) is the upper bound of the integral in the range: \(1 >= x >= 0\)
Syntax
IBeta(x, a, b)
Example