Inverse Error Function Calculator

Online calculator for computing the inverse error function erfi(x)

Inverse Error Function Calculator

The Inverse Error Function

The inverse error function erfi(x) computes quantiles of the normal distribution and is essential for statistical inference and critical values.

Enter Parameters
Input probability y (-1 ≤ y ≤ 1)
Inverse Error Function Result
erfi(y):
Argument x such that erf(x) = y
Inverse Error Function Properties

Inverse function: If erf(x) = y, then erfi(y) = x

Quantile Function Monotonically Increasing -1 ≤ Input ≤ 1

Inverse Error Function Curve

The curve shows the inverse mapping from probability to argument.
Strictly increasing function with symmetric behavior.

Inverse Error Function


What is the Inverse Error Function?

The inverse error function erfi(x) is the inverse of the error function:

  • Definition: erfi(y) is the x such that erf(x) = y
  • Quantile Function: Computes standard normal quantiles
  • Range: -1 ≤ y ≤ 1
  • Application: Statistical hypothesis tests, confidence intervals, normal quantiles
  • Significance: Bridge between probability and z-values
  • Related to: Normal distribution quantiles, probit function

Normal Quantiles and Statistical Applications

The inverse error function is fundamental for normal distribution calculations:

Normal Quantile Interpretation
  • z-Score: erfi(p) = √2 × Φ⁻¹((p+1)/2)
  • Percentiles: Converting probabilities to z-values
  • Critical Values: Statistical test thresholds
  • Confidence Limits: Interval boundary calculations
Probit Analysis
  • Probit Function: Link function in regression
  • Dose-Response: Biological assay analysis
  • Binary Outcomes: Logistic regression alternative
  • Threshold Models: Latent variable modeling

Applications of the Inverse Error Function

The inverse error function is essential for statistics and scientific computing:

Statistical Inference
  • Normal distribution quantiles
  • Critical values for z-tests
  • Confidence interval computation
  • p-value transformations
Biometric Analysis
  • Probit regression modeling
  • Dose-response curves
  • LD50 and EC50 calculations
  • Tolerance distribution analysis
Monte Carlo Simulation
  • Normal random number generation
  • Box-Muller transformation
  • Gaussian process simulation
  • Stochastic modeling
Engineering Applications
  • Quality control specifications
  • Reliability engineering
  • Optimization algorithms
  • Signal processing filters

Formulas for the Inverse Error Function

Inverse Function Definition
\[erfi(y) = x \quad \text{with} \quad erf(x) = y\]

x is the argument such that the error function yields y

Normal Quantile Relationship
\[erfi(y) = \sqrt{2} \cdot \Phi^{-1}\left(\frac{y+1}{2}\right)\]

Connection to standard normal quantile function Φ⁻¹

Probit Function Connection
\[probit(p) = \sqrt{2} \cdot erfi(2p - 1)\]

Link to probit function for probability p

Inverse Relationship
\[erf(erfi(y)) = y\]

Fundamental identity for inverse functions

Series Expansion (Small y)
\[erfi(y) \approx \frac{\sqrt{\pi}}{2}y + \frac{\pi}{12}y^3 + ...\]

Taylor series for small argument values

Symmetry Property
\[erfi(-y) = -erfi(y)\]

Odd function property

Example Calculations for the Inverse Error Function

Example 1: Standard Normal Quantile
95th percentile of standard normal
Question
  • Standard normal distribution: N(0,1)
  • Find: 95th percentile (z₀.₀₅)
  • Probability: 95% = 0.95
Setup: Convert to erf domain: y = 2(0.95) - 1 = 0.9
Calculation
\[erfi(0.9) \approx 1.1631\] \[z_{0.05} = \sqrt{2} \times 1.1631 \approx 1.645\] \[\text{95th percentile: } 1.645\]
Interpretation: 95% of standard normal values lie below z = 1.645.
Example 2: Probit Analysis (Dose-Response)
LD50 calculation, 50% response probability
Problem
  • Dose-response study: toxicity assessment
  • Find: probit value for 50% response
  • Response probability: p = 0.5
Probit calculation: probit(0.5)
Solution
\[y = 2(0.5) - 1 = 0\] \[erfi(0) = 0\] \[probit(0.5) = \sqrt{2} \times 0 = 0\] \[\text{LD50 corresponds to probit = 0}\]
Application: The 50% response dose (LD50) corresponds to probit value 0, which is the reference point.
Example 3: Calculator Default Value
y = 0.3
Question
Find: x such that erf(x) = 0.3
\[erfi(0.3) = x\]
Calculation Result
\[erfi(0.3) \approx 0.2724\] \[\text{Verification: } erf(0.2724) \approx 0.3\]
Inverse Error Function Values
y (erf value) erfi(y) Normal Percentile Statistical Use
0.00.000050th percentileMedian
0.30.272465th percentileMild significance
0.60.595180th percentileModerate significance
0.91.163195th percentileHigh significance
0.951.385997.5th percentileVery high significance
0.991.821499.5th percentileExtreme significance

Mathematical Foundations of the Inverse Error Function

The inverse error function erfi(x) is the inverse of the error function and provides the mathematical foundation for computing normal distribution quantiles. It is essential for statistical inference, hypothesis testing, and confidence interval construction.

Historical Development

The development of the inverse error function paralleled advances in probability theory:

  • Carl Friedrich Gauss (1809): Normal distribution theory foundation
  • Pierre-Simon Laplace (1812): Central limit theorem and normal approximations
  • Francis Galton (1880s): Practical applications in biometry
  • Ronald Fisher (1920s): Statistical inference and hypothesis testing
  • Modern era: Numerical algorithms and computational implementations

Mathematical Properties

The inverse error function has important analytical properties:

Analytical Properties
  • Odd function: erfi(-y) = -erfi(y)
  • Monotonicity: Strictly increasing
  • Domain: -1 ≤ y ≤ 1
  • Range: -∞ < erfi(y) < +∞
Computational Aspects
  • Series expansion: For small arguments
  • Asymptotic expansion: For large arguments
  • Rational approximations: For efficient computation
  • Newton-Raphson: Iterative root finding

Connections to Other Functions

The inverse error function is related to many important statistical functions:

Statistical Functions
  • Normal quantile: Φ⁻¹(p) = √2 × erfi(2p-1)
  • Probit function: probit(p) = √2 × erfi(2p-1)
  • z-scores: Critical values for hypothesis tests
  • Confidence limits: Interval boundary calculations
Special Functions
  • Dawson integral: Related special function
  • Fresnel integrals: Connection via complex analysis
  • Gamma function: Probabilistic representation
  • Hypergeometric functions: Series representations

Applications in Modern Sciences

Statistics & Inference
  • Hypothesis test critical values
  • Confidence interval boundaries
  • p-value computations
  • Sample size determinations
Applied Sciences
  • Quality control and Six Sigma
  • Biostatistics and clinical trials
  • Econometrics and finance
  • Engineering reliability analysis
Summary

The inverse error function is a cornerstone of statistical computing and data analysis. Its role in converting probabilities to standard normal quantiles makes it indispensable for hypothesis testing, confidence intervals, and statistical modeling. From quality control in manufacturing to clinical trial analysis in medicine, it provides the mathematical foundation for evidence-based decision making.

Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?