Pooled Standard Deviation

Formulas and examples for the pooled standard deviation of two data series

The Pooled Standard Deviation is a weighted average of standard deviations for two or more groups. The individual standard deviations are averaged, with more “weight” given to larger sample sizes.


Pooled standard deviation formulas


\(\displaystyle SD_p= \sqrt{\frac{(n-1)SD_x^2+(m-1)SD_y^2}{n+m-2}} \)

Calculating the standard deviation of a sample

\(\displaystyle s=\sqrt{ \frac{1}{n-1} \sum^n_{i=1} (x_i-\overline{x})^2} \)

\(s^2\) Standard deviation
\(n\) Number of data points
\(x_i\) Single data point
\(\overline{x}\) Mean of the sample

Example

data set \( \displaystyle x= 3, 5, 7, 8 \)
data set \( \displaystyle y= 10, 16, 22, 27 \)
mean \( \displaystyle x= \frac{3+ 5+ 7+ 8}{4} =5.75\)

mean \( \displaystyle y= \frac{10+ 16+ 22+ 27}{4} =18.75\)
\( \displaystyle SD_x=\sqrt{\frac{1}{4-1}\cdot((3-5.75)^2+(5-5.75)^2+(7-5.75)^2+(8-5.75)^2)}\)

\( \displaystyle SD_x=\sqrt{\frac{1}{3}\cdot(7.5625+0.5625+1.5625+5.0625)}\)

\( \displaystyle SD_x=\sqrt{\frac{1}{3}\cdot 14.75} =\sqrt{4.9167}=\color{blue}{2.217}\)
\( \displaystyle SD_y=\sqrt{\frac{1}{4-1}\cdot((10-18.75)^2+(16-18.75)^2+(22-18.75)^2+(27-18.75)^2)}\)

\( \displaystyle SD_y=\sqrt{\frac{1}{3}\cdot(76.5625+7.5625+10.5625+68.0625)}\)

\( \displaystyle SD_y=\sqrt{\frac{1}{3}\cdot 162.75} =\sqrt{54.25} =\color{blue}{7.3655}\)
\( \displaystyle SD_p= \sqrt{\frac{(4-1)\cdot 2.217^2 +(4-1)\cdot 7.37^2}{4+4-2}} \)

\( \displaystyle SD_p= \sqrt{\frac{3\cdot 4.9167 +3\cdot 54.25}{6}} \)

\( \displaystyle SD_p= \sqrt{\frac{14.75 +162.75}{6}} =\sqrt{29.583} =\color{blue}{5.44}\)

Calculate pooled standard deviation online →



More Statistics Tutorials

Arithmetic Mean (Average)
Covariance
Five Number
Median
Empirical Distribution
Geometric Mean
Pooled Standard Deviation
Pooled Variance
Harmonic Mean
Contraharmonic Mean



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?