Quaternion Scalar Multiplication
Multiply a quaternion by a real scalar
Quaternion Scalar Multiplication Calculator
Quaternion Scalar Multiplication
Multiplies a quaternion q with a real scalar λ by component-wise multiplication of all four components
Scalar multiplication
Simple operation: λ × q = λ × (w + xi + yj + zk)
Commutative: λ × q = q × λ (scalar may be left or right)
Scaling: changes the "size" of the quaternion without altering direction
Scalar multiplication info
Properties
Commutative: λ × q = q × λ
Associative: λ × (μ × q) = (λμ) × q
Distributive: λ × (q₁ + q₂) = λq₁ + λq₂
Simple: Each component × scalar
Scaling: changes "size", not direction
Special cases
|
Formulas for quaternion scalar multiplication
General scalar multiplication formula
Component-wise multiplication with the scalar
Component-wise representation
Each component multiplied individually
Vector representation
As a 4D vector scalar multiplication
Magnitude of scaled quaternion
Magnitude scales with the absolute scalar value
Algebraic properties
Commutative, associative, distributive
Examples for quaternion scalar multiplication
Example 1: Simple scaling
λ × q = 2 + 6i + 10j + 4k
Example 2: Negative scalar
λ × q = -1 - 2i + 1.5j - 0.5k
Example 3: Normalization
Unit quaternion generated
Example 4: Special cases
Zero, identity, negation
Geometric meaning
Scalar multiplication changes the "size" of the quaternion but not its "direction" in 4D space
Step-by-step guide
Preparation
- Write quaternion in standard form
- Choose scalar value λ
- Identify all four components
- Compute systematically
Execution
- W component: λ × w
- X component: λ × x
- Y component: λ × y
- Z component: λ × z
Anwendungen der Quaternion-Skalarmultiplikation
Die Quaternion-Skalarmultiplikation ist eine grundlegende Operation mit vielen Anwendungen:
3D-Grafik & Animation
- Normalisierung: Einheits-Quaternionen erzeugen
- Skalierung: Rotations-"Intensität" ändern
- Interpolation: Gewichtete Mischung
- Animation: Zeitbasierte Skalierung
Robotik & Steuerung
- Kalibrierung: Sensordaten normalisieren
- Dämpfung: Rotationsgeschwindigkeit reduzieren
- Verstärkung: Signal-Amplifikation
- Filterung: Gewichtete Mittelwerte
Numerical mathematics
- Normalization: enforce |q| = 1
- Scaling: adjust magnitude
- Sign flip: λ = -1
- Discretization: scale time steps
Key properties
- Simplicity: only multiplication required
- Commutativity: λ×q = q×λ
- Linearity: distributive over addition
- Magnitude: |λ×q| = |λ|×|q|
Quaternion scalar multiplication: simple but powerful
The quaternion scalar multiplication is the simplest operation in quaternion algebra, yet one of the most useful. It enables proportional scaling of all quaternion components by a real factor. This operation is commutative, associative and distributive, making it ideal for normalization, weighting and linear transformations. In 3D graphics it is frequently used to generate unit quaternions required for valid rotations. The operation preserves the "direction" of the quaternion in 4D space and only changes its "size".
Summary
Quaternion scalar multiplication combines simplicity with versatility. As a component-wise multiplication it is computationally trivial, but its applications range from basic normalization to complex interpolation algorithms. Its algebraic properties (commutativity, associativity, distributivity) make it a reliable building block for larger quaternion operations. In modern 3D applications scalar multiplication is indispensable for generating and manipulating unit quaternions that form the backbone of rotation calculations.