Angle Measure Converter

Conversion of decimal degrees into degrees, minutes and seconds (DMS format)

Angle Calculator (DMS)

Decimal Degree Converter

Select the unit of measurement that you know and enter its value. The calculator converts decimal degrees into DMS format (degrees° minutes' seconds").

Enter the unit of measure and the angle
Calculation Results (DMS Format)
Degrees, Minutes, Seconds
Degree °
Arc minutes '
Arc seconds "

DMS Format - Overview

Degrees-Minutes-Seconds System
DMS Format (Degrees, Minutes, Seconds)

1° = 60' = 3,600"

What is DMS Format?

The DMS format (Degrees, Minutes, Seconds) is a traditional way to represent angles. It divides a degree into 60 arcminutes and each arcminute into 60 arcseconds.

  • Degree (°): Main unit of the angle
  • Arcminute ('): 1/60 of a degree
  • Arcsecond ("): 1/60 of an arcminute = 1/3600 of a degree
Applications
  • Navigation: GPS coordinates (e.g., 48° 8' 35" N)
  • Astronomy: Positions of stars and planets
  • Cartography: Latitude and longitude
  • Surveying: Precise angle measurements
  • Geodesy: Land surveying
Example: Munich

Decimal degree: 48.1351° N, 11.5820° E

DMS format: 48° 8' 6" N, 11° 34' 55" E

Important Conversions
  • 1° = 60' (arcminutes)
  • 1° = 3,600" (arcseconds)
  • 1' = 60" (arcseconds)
  • 1' = 0.01667° (approx. 1/60 degree)
  • 1" = 0.000278° (approx. 1/3600 degree)

Formulas for Angle Conversion

Basic Relationships

Degree, Arcminute, Arcsecond
\(\displaystyle 1° = 60' = 3600''\)
Radian and Degree
\(\displaystyle degree = radian \cdot \frac{180}{\pi}\)
\(\displaystyle radian = degree \cdot \frac{\pi}{180}\)
Gradian
\(\displaystyle degree = gradian \cdot \frac{90}{100}\)
\(\displaystyle radian = gradian \cdot \frac{\pi}{200}\)
Mil
\(\displaystyle mil = degree \cdot \frac{3200}{180}\)
\(\displaystyle mil = gradian \cdot 16\)

Conversion Decimal Degree → DMS

Example: Convert 45.515° to DMS
Given:
\(\displaystyle deg_{dec} = 45.515°\)
Step 1: Determine degrees (integer part)
\(\displaystyle deg = int(deg_{dec})\)
\(\displaystyle = int(45.515) = 45\)
Step 2: Calculate decimal minutes
\(\displaystyle min_{dec} = (deg_{dec} - deg) \cdot 60\)
\(\displaystyle = (45.515 - 45) \cdot 60 = 30.9\)
Step 3: Determine minutes (integer part)
\(\displaystyle min = int(min_{dec})\)
\(\displaystyle = int(30.9) = 30\)
Step 4: Calculate seconds
\(\displaystyle sec = (min_{dec} - min) \cdot 60\)
\(\displaystyle = (30.9 - 30) \cdot 60 = 54\)
Result

45° 30' 54"

Practical Tips

Decimal degree → DMS:

  • Degree: Integer part
  • Minutes: Decimal part × 60 (integer)
  • Seconds: Remainder × 60

DMS → Decimal degree:

  • Formula: deg + min/60 + sec/3600
  • Example: 45° 30' 54" = 45 + 30/60 + 54/3600
  • Result: 45.515°

Comparison Table Decimal Degree ↔ DMS

Decimal Degree DMS Format Description
0° 0' 0" Zero angle
30° 30° 0' 0" 30-degree angle
45.515° 45° 30' 54" Example with decimal places
48.1351° 48° 8' 6" Latitude Munich
90° 90° 0' 0" Right angle
180° 180° 0' 0" Straight angle

Other units of measure converter

Length units of measurement  •  Area units of measurement  •  Volume units of measurement  •  Weight units of measurement  •  Temperature units of measurement  •  Power units of measurement  •  Time units of measurement  •  Data volume units of measurement  •  Angle units of measurement  •  Angle decimal to degrees and minutes  •  Slope of a road to angle units  •