Pyramid Frustum Calculation

Calculator and formulas for calculating a regular pyramid frustum"


This function calculates the properties of a regular pyramid frustum".

To perform the calculation, enter the base and top length, height and number of vertices of the pyramid. Then click the 'Calculate' button.


Pyramid Frustum Calculator

 Input
Base side length a
Top side length b
Height h
Base vertices n
Decimal places
 Results
Slant height s
Edge length e
Slant area As
Lateral Surface AL
Surface area S
Perimeter P
Volume V

regular truncated pyramid

Formulas for the regular truncated pyramid


Slant height (\(\small{s}\))

\(\displaystyle s=\sqrt{\frac{1}{4} · cot^2\left(\frac{π}{n} \right) · ( a - b )^2 + h^2} \)

Edge length (\(\small{e}\))

\(\displaystyle e =\sqrt{\frac{4 · s^2 + ( a - b )^2 }{4}}\)

Base and top area (\(\small{A}\))

\(\displaystyle A = n · \frac{a^2 + b^2}{4 · tan(\frac{π}{n})} \)

Slant area (\(\small{A_s}\))

\(\displaystyle A_s = \frac{(a + b) · s}{2} \)

Lateral Surface (\(\small{A_L}\))

\(\displaystyle A_L = n · A_s \)

Surface area (\(\small{S}\))

\(\displaystyle S = A+ A_L \)

Perimeter (\(\small{P}\))

\(\displaystyle P = n ·a \)

regular truncated pyramid

Volumen (\(\small{P}\))

\(\displaystyle V = \frac{h}{3} · \left( \frac{n ·( a^2 + b^2) }{ 4 · tan(\frac{π}{n})} + \sqrt{\frac{n^2 · a^2 · b^2}{(4 · tan(\frac{π}{n}))^2}} \right) \)

Triangular PyramidPyramidPentagonal PyramidHexagonal PyramidHeptagonal PyramidRegular PyramidPyramid, truncated, squarePyramid, truncated, rectangularPyramid FrustumTriangular BipyramidPentagonal BipyramidHexagonal BipyramidRegular BipyramidTriangular Pyramid



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?