Frustum Pyramid Calculator

Calculator and formulas to calculate a frustum pyramid


This function calculates various parameters of a frustum pyramid. The frustum pyramid consists of a regular frustum or truncated pyramid and a pyramid placed on the larger base.

To calculate, enter the side lengths a and b, the heights of the pyramid and the frustum (truncated pyramid) and the number of corners. Then click on the 'Calculate' button.


Frustum pyramid calculator

  Input
Side length a
Side length b
Pyramid height j
Frustum height i
Number vertices n
Decimal places
  Results
Overall height
Base area
Surface pyramid
Later. surface frustum
Entire surface
Volume pyramid
Volume Frustum
Total volume
Base perimeter

Frustum Pyramid

Frustum Pyramid Formulas


Overall height (\(\small{h}\))

\(\displaystyle h=i+j \)

Base perimeter (\(\small{P}\))

\(\displaystyle P =b\cdot n\)

Base area (\(\small{A}\))

\(\displaystyle A = \frac{ n · a^2 }{ 4 · tan(\frac{π}{n})} \)

Lateral surface frustum (\(\small{L_F}\))

\(\displaystyle L_F = \frac{n}{4} \cdot (a + b) \cdot \sqrt{cot^2\left(\frac{π}{n}\right) \cdot (a - b)^2 + 4\cdot i^2 } \)

Surface pyramid (\(\small{L_P}\))

\(\displaystyle L_P = n · b · \frac{\sqrt{j^2 + \frac{1}{4} · b^2 · cot^2(\frac{π}{n})}}{2} \)

Entire surface (\(\small{S}\))

\(\displaystyle S = A+ L_F+L_P \)

Volume Frustum (\(\small{V_F}\))

\(\displaystyle V_F = \frac{i}{3} · \left(\frac{n · (a^2 + b^2)}{4 · tan(\frac{π}{n})} \displaystyle + \sqrt{\frac{ n^2 · a^2 · b^2 }{ (4 · tan(\frac{π}{n}))^2}} \right) \)

Volume Pyramide (\(\small{V_P}\))

\(\displaystyle V_P = \frac{n · b^2 · j}{12 · tan(\frac{π}{n})} \)

Volume (\(\small{V}\))

\(\displaystyle V = V_F+V_P \)
Frustum Pyramid

Triangular PyramidPyramidPentagonal PyramidHexagonal PyramidHeptagonal PyramidRegular PyramidPyramid, truncated, squarePyramid, truncated, rectangularPyramid FrustumTriangular BipyramidPentagonal BipyramidHexagonal BipyramidRegular BipyramidTriangular Pyramid



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?