Complex Number Conjugate and Division

Learn about complex conjugates and how to divide complex numbers

Introduction

Before we can properly divide complex numbers, we need to understand the concept of a complex conjugate. This fundamental operation is essential for division and appears throughout complex analysis.

The conjugate of a complex number has important algebraic properties that make division possible and allow us to simplify complex expressions.

Complex Number Conjugate

The complex conjugate (or just "conjugate") of a complex number is obtained by changing the sign of the imaginary part only.

Definition of Complex Conjugate:

For a complex number \(z = a + bi\), the complex conjugate is:

Complex Conjugate:
\(\displaystyle \overline{z} = a - bi\)

The conjugate is denoted with a horizontal line (overline) above the variable: \(\overline{z}\) or sometimes as \(z^*\).

Conjugate Examples

Conjugate Examples
  • \(z = 5 + 3i \quad \Rightarrow \quad \overline{z} = 5 - 3i\)
  • \(z = 2 - 7i \quad \Rightarrow \quad \overline{z} = 2 + 7i\)
  • \(z = 4 \quad \Rightarrow \quad \overline{z} = 4\) (purely real)
  • \(z = 6i \quad \Rightarrow \quad \overline{z} = -6i\) (purely imaginary)
  • \(z = -3 - 2i \quad \Rightarrow \quad \overline{z} = -3 + 2i\)

Key Property: Product with Conjugate

A crucial property is that the product of a complex number and its conjugate is always a real number.

Conjugate Product Formula:

For any complex number \(z = a + bi\):

Product with Conjugate:
\(\displaystyle z \cdot \overline{z} = (a + bi)(a - bi) = a^2 + b^2\)
Example: Product with Conjugate

For \(z = 5 + 3i\):

\(\displaystyle (5 + 3i)(5 - 3i) = 25 + 15i - 15i - 9i^2\)
\(\displaystyle = 25 + 9 = 34\)

Result: The product is the real number 34.

Important Insight:

This property is the key to eliminating imaginary numbers from denominators during division. By multiplying by the conjugate, we convert the denominator into a real number.

Properties of Complex Conjugates

Double Conjugate
\(\displaystyle \overline{\overline{z}} = z\)

Taking the conjugate twice returns the original number
Sum Property
\(\displaystyle \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\)

Conjugate of sum equals sum of conjugates
Product Property
\(\displaystyle \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}\)

Conjugate of product equals product of conjugates
Quotient Property
\(\displaystyle \overline{\frac{z_1}{z_2}} = \frac{\overline{z_1}}{\overline{z_2}}\)

Conjugate of quotient equals quotient of conjugates

Division of Complex Numbers

To divide one complex number by another, we use the conjugate of the denominator. By multiplying both numerator and denominator by the conjugate, we transform the denominator into a real number, making the division straightforward.

Division Formula:

For complex numbers \(z_1 = a + bi\) and \(z_2 = c + di\) (with \(z_2 \neq 0\)):

Division of Complex Numbers:
\(\displaystyle \frac{z_1}{z_2} = \frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{(a + bi)(c - di)}{c^2 + d^2}\)

Step-by-Step Division Process

1Identify the denominator
Write the division problem and identify \(z_2 = c + di\)
2Find the conjugate
The conjugate of \(c + di\) is \(c - di\)
3Multiply by conjugate
Multiply both numerator and denominator by the conjugate: \(\displaystyle \frac{\overline{z_2}}{\overline{z_2}}\)
4Expand and simplify
Use FOIL on the numerator; use the conjugate product formula for the denominator
5Separate real and imaginary parts
Divide numerator terms by the real denominator

Division Examples

Example 1: Basic Division

Divide \(\displaystyle \frac{3 + i}{1 - 2i}\)

Step 1-2: The denominator is \(1 - 2i\), so the conjugate is \(1 + 2i\)

Step 3: Multiply by the conjugate:

\(\displaystyle \frac{3 + i}{1 - 2i} = \frac{(3 + i)(1 + 2i)}{(1 - 2i)(1 + 2i)}\)

Step 4: Expand numerator using FOIL:

\(\displaystyle (3 + i)(1 + 2i) = 3 + 6i + i + 2i^2 = 3 + 7i - 2 = 1 + 7i\)

Step 4: Denominator using conjugate formula:

\(\displaystyle (1 - 2i)(1 + 2i) = 1^2 + 2^2 = 1 + 4 = 5\)

Step 5: Separate real and imaginary parts:

\(\displaystyle \frac{1 + 7i}{5} = \frac{1}{5} + \frac{7}{5}i\)

Result: \(\displaystyle \frac{3 + i}{1 - 2i} = \frac{1}{5} + \frac{7}{5}i\)

Example 2: Division with Negative Terms

Divide \(\displaystyle \frac{4 - 2i}{2 + i}\)

Conjugate: The conjugate of \(2 + i\) is \(2 - i\)

Multiply:

\(\displaystyle \frac{(4 - 2i)(2 - i)}{(2 + i)(2 - i)}\)

Numerator:

\(\displaystyle (4 - 2i)(2 - i) = 8 - 4i - 4i + 2i^2 = 8 - 8i - 2 = 6 - 8i\)

Denominator:

\(\displaystyle (2 + i)(2 - i) = 4 + 1 = 5\)

Result:

\(\displaystyle \frac{6 - 8i}{5} = \frac{6}{5} - \frac{8}{5}i\)

Example 3: Division by Pure Imaginary

Divide \(\displaystyle \frac{6}{2i}\)

Conjugate of \(2i\): \(-2i\)

\(\displaystyle \frac{6}{2i} = \frac{6 \cdot (-2i)}{2i \cdot (-2i)} = \frac{-12i}{-4i^2} = \frac{-12i}{4} = -3i\)

Conjugate and Division Summary

Concept Formula/Notation Property/Example
Complex Number \(z = a + bi\) Example: \(5 + 3i\)
Conjugate \(\overline{z} = a - bi\) Example: \(5 - 3i\)
Conjugate Product \(z \cdot \overline{z} = a^2 + b^2\) Always real: \(25 + 9 = 34\)
Division Formula \(\displaystyle \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}\) Multiply by conjugate to rationalize

Common Mistakes to Avoid

Mistake 1: Wrong Conjugate Sign

WRONG: Conjugate of \(5 + 3i\) is \(-5 - 3i\) ✗
RIGHT: Conjugate of \(5 + 3i\) is \(5 - 3i\) (only change imaginary sign) ✓

Mistake 2: Forgetting to Multiply Both Numerator and Denominator

WRONG: \(\displaystyle \frac{3 + i}{1 - 2i} = \frac{3 + i}{1 + 2i}\) (only changed denominator) ✗
RIGHT: \(\displaystyle = \frac{(3+i)(1+2i)}{(1-2i)(1+2i)}\) (multiply both) ✓

Mistake 3: Not Distributing FOIL Correctly

WRONG: \((3+i)(1+2i) = 3 + 6i + 1i + 2i^2 = 4 + 7i - 2\) (wrong grouping) ✗
RIGHT: \(= 3 + 6i + i + 2i^2 = 3 + 7i - 2 = 1 + 7i\) ✓

Practice Problems

Conjugate Identification

Find the Conjugate
  • \(z = 3 + 4i \quad \Rightarrow \quad \overline{z} = 3 - 4i\)
  • \(z = -2 + 5i \quad \Rightarrow \quad \overline{z} = -2 - 5i\)
  • \(z = 7 - i \quad \Rightarrow \quad \overline{z} = 7 + i\)
  • \(z = -3i \quad \Rightarrow \quad \overline{z} = 3i\)

Division Problems

Divide These Complex Numbers
  • \(\displaystyle \frac{2 + i}{1 + i} = ?\) → Answer: \(\frac{3}{2} - \frac{1}{2}i\)
  • \(\displaystyle \frac{5 - 2i}{2 + i} = ?\) → Answer: \(\frac{8}{5} - \frac{9}{5}i\)
  • \(\displaystyle \frac{1 + 2i}{3 - i} = ?\) → Answer: \(\frac{1}{10} + \frac{7}{10}i\)
  • \(\displaystyle \frac{6}{1 + i} = ?\) → Answer: \(3 - 3i\)






Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?