Converting Normal to Polar Form
Transform complex numbers from rectangular (normal) to polar coordinates
Introduction to Normal-to-Polar Conversion
In many practical applications, complex numbers are given in normal (rectangular) form \(z = a + bi\), but we need them in polar form to better understand their magnitude and direction.
Converting from normal to polar form requires calculating two key parameters:
- The magnitude (distance from origin)
- The argument (angle from positive real axis)
The conversion process combines the Pythagorean theorem (for magnitude) with inverse trigonometric functions (for argument), but requires careful attention to quadrants.
Conversion Formulas
Step 1: Calculate the Magnitude
The magnitude is the distance from the origin to the point \((a, b)\):
\(\displaystyle r = |z| = \sqrt{a^2 + b^2}\)
This formula comes directly from the Pythagorean theorem.
Step 2: Calculate the Argument
The argument is the angle from the positive real axis. Several equivalent formulas exist:
\(\displaystyle \varphi = \arccos\left(\frac{a}{r}\right)\)
\(\displaystyle \varphi = \arctan\left(\frac{b}{a}\right)\)
The simple formulas above don't always give the correct angle. You must consider which quadrant the complex number is in and adjust the angle accordingly.
Quadrant-Based Angle Adjustment
The complex plane is divided into four quadrants. The argument depends on the signs of the real and imaginary parts.
Complex Number Quadrants:
Different quadrants require different angle calculations
Quadrant-Specific Formulas
Quadrant I (+ real, + imag)
\(\displaystyle \varphi = \arctan\left(\frac{b}{a}\right)\)\(0° < \varphi < 90°\)
Quadrant II (- real, + imag)
\(\displaystyle \varphi = 180° - \arctan\left(\frac{b}{|a|}\right)\)\(90° < \varphi < 180°\)
Quadrant III (- real, - imag)
\(\displaystyle \varphi = 180° + \arctan\left(\frac{|b|}{|a|}\right)\)\(180° < \varphi < 270°\)
Quadrant IV (+ real, - imag)
\(\displaystyle \varphi = 360° - \arctan\left(\frac{|b|}{a}\right)\)\(270° < \varphi < 360°\)
The argument can also be expressed as a value between \(-180°\) and \(+180°\) instead of \(0°\) to \(360°\). In this case, Quadrants III and IV use negative angles.
Step-by-Step Conversion Process
1Identify the real and imaginary parts
For \(z = a + bi\), determine \(a\) and \(b\)2Calculate the magnitude
\(\displaystyle r = \sqrt{a^2 + b^2}\)3Determine the quadrant
Check the signs of \(a\) and \(b\) to identify which quadrant4Calculate preliminary angle
Use the appropriate arctangent or arccosine5Adjust angle based on quadrant
Add or subtract 180° or 360° as needed6Write polar form
Express as \(z = r(\cos\varphi + i\sin\varphi)\)Conversion Examples
Example 1: Quadrant I - \(z = 3 + 4i\)
Convert \(3 + 4i\) to polar form
Step 1: \(a = 3\), \(b = 4\)
Step 2: Calculate magnitude
Step 3: Quadrant I (both positive)
Step 4-5: Calculate argument
Result: \(z = 5(\cos 53.13° + i\sin 53.13°)\)
Example 2: Quadrant II - \(z = -3 + 4i\)
Convert \(-3 + 4i\) to polar form
Step 1: \(a = -3\), \(b = 4\)
Step 2: Calculate magnitude
Step 3: Quadrant II (negative real, positive imag)
Step 4-5: Calculate argument
Result: \(z = 5(\cos 126.87° + i\sin 126.87°)\)
Example 3: Quadrant III - \(z = -3 - 4i\)
Convert \(-3 - 4i\) to polar form
Step 2: Magnitude remains \(r = 5\)
Step 3: Quadrant III (both negative)
Step 4-5: Calculate argument
Result: \(z = 5(\cos 233.13° + i\sin 233.13°)\)
Example 4: Quadrant IV - \(z = 3 - 4i\)
Convert \(3 - 4i\) to polar form
Step 2: Magnitude remains \(r = 5\)
Step 3: Quadrant IV (positive real, negative imag)
Step 4-5: Calculate argument
Alternate notation (±180°): \(\varphi = -53.13°\)
Result: \(z = 5(\cos 306.87° + i\sin 306.87°)\)
Conversion Summary Table
| Normal Form | Quadrant | Magnitude | Argument (0-360°) | Argument (±180°) |
|---|---|---|---|---|
| \(3 + 4i\) | I | \(5\) | \(53.13°\) | \(53.13°\) |
| \(-3 + 4i\) | II | \(5\) | \(126.87°\) | \(126.87°\) |
| \(-3 - 4i\) | III | \(5\) | \(233.13°\) | \(-126.87°\) |
| \(3 - 4i\) | IV | \(5\) | \(306.87°\) | \(-53.13°\) |
Key Points to Remember
- Magnitude formula: \(r = \sqrt{a^2 + b^2}\)
- Always identify which quadrant the complex number is in
- Quadrant I: Use \(\arctan\left(\frac{b}{a}\right)\) directly
- Quadrant II: Add 180° to the calculated angle
- Quadrant III: Add 180° to the calculated angle (or subtract from 360°)
- Quadrant IV: Subtract from 360° (or use negative angle)
- Arguments can be expressed as 0-360° or ±180°
- Always verify using: \(a = r\cos\varphi\) and \(b = r\sin\varphi\)
|
|