Segment of a Circle Calculation

Calculator and formulas for calculating a segment of a circle


This online calculator calculates the area, perimeter, chord, arc length and center of gravity of a circular segment. A circle segment is separated from the circle by a straight line, the chord.

To perform the calculation, enter the radius and the selected second parameter and then click the 'Calculate' button.


Circle segment calculator

 Input
Decimal places
 Results
Angle α
Height h
Area A
Perimeter P
Arc length b
Chord s
Centroid S
Radius r
Keisausschnitt

Formulas for calculating segments of a circle


Angle

\(\displaystyle α =2 · acos\left( 1-\frac{h}{r}\right) \)

\(\displaystyle α =2 · asin\left(\frac{s}{2·r}\right) \)

\(\displaystyle α =4 · atan\left(\frac{2·h}{s}\right) \)

Height

\(\displaystyle h = r · \left( 1 - cos\left( \frac{α}{2}\right) \right)\)

\(\displaystyle h=r-\frac{1}{2}\sqrt{4r^2-s^2} \)

\(\displaystyle h=\frac{s}{2}·tan\left(\frac{α}{4}\right) \)

Area

\(\displaystyle A=\frac{\frac{1}{2}· atan\left(\frac{2h}{s}\right)·(4h^2+s^2)^2+h·s·(4h^2-s^2) }{16h^2} \)

\(\displaystyle A=r^2·acos\left(1-\frac{h}{r}\right) -(r-h)·\sqrt{2rh-h^2}\)
\(\displaystyle A = \frac{r^2}{2}· \left(α-sin(α)\right)\)

Perimeter

\(\displaystyle P = s+b\)

Arc length

\(\displaystyle b = r · α\)

\(\displaystyle b=2·r·asin\left(\frac{s}{2r}\right) \)

\(\displaystyle b=\frac{atan\left(\frac{2h}{s}\right)·\left(4h^2+s^2\right)}{2h} \)

Chord

\(\displaystyle s = 2r · sin \left( \frac{α}{2}\right)\)

\(\displaystyle s=2h·cot\left(\frac{α}{4}\right)\)

\(\displaystyle s=2\cdot\sqrt{2rh-h^2} \)

Centroid

\(\displaystyle S = \frac{s^3}{12 ·A} -r· cos\left(\frac{a}{2}\right) \)

Angle functions

From Deg, Min, Sec to DecimalFrom Degree to PercentAngle sumSide lengths from angles

Circular functions

AnnulusAnnulus sectorCircleCircular anglesCircular arcsCircular sectorCircular segmentEllipseParabolic archSquaring the Circle




Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?