Parallelogram

Properties and formulas for calculation of a parallelogram


A parallelogram or rhomboid is a convex flat quadrilateral in which the opposite sides are parallel.

Properties

  • Two opposite sides are parallel and of equal length.
  • Opposite angles are the same size.
  • Any two adjacent angles add up to 180°.
  • The diagonals bisect each other.

Formeln


Area

\(\displaystyle A=a·h_a \ \ =b·h_b \)

\(\displaystyle A=a·b·sin(α)\ \ =a·b·sin(β) \)

Perimeter

\(\displaystyle P = 2·a+2·b \ \ = 2 ·(a + b)\)

\(\displaystyle P = 2 · \frac{h_a}{sin(α)} + (2 · b)\)

Height

\(\displaystyle h_a = sin(α) · a \ \ = sin(β) · a\)

\(\displaystyle h_a = \frac{A}{b}\)


\(\displaystyle h_b = sin(α) · b \ \ = sin(β) · b\)

\(\displaystyle h_b = \frac{A}{a}\)

Diagonal

\(\displaystyle e = \sqrt{a^2 + b^2 - 2 · a · b · cos(β)}\)

\(\displaystyle e = \sqrt{a^2 + b^2 + 2 · a · b · cos(α)}\)


\(\displaystyle f = \sqrt{a^2 + b^2 - 2 · a · b · cos(α)}\)

\(\displaystyle f = \sqrt{a^2 + b^2 + 2 · a · b · cos(β)}\)

Interior angle

\(\displaystyle α=γ, \ \ β=δ, \ \ α+β=180°\)

\(\displaystyle α=asin\left(\frac{A}{a·b}\right)\)

Parallelogram equation

\(\displaystyle e^2+f^2 = 2 ·(a^2 + b^2)\)

Parallelogram online calculator →


Angle bisector
Median
Altitude and the Orthocenter
Triangle bisector
Pythagorean theorem
Pythagorean triples
Circle
Square
Rectangle
Rhombus
Parallelogram
Trapezoid