Parallelogram (Rhomboid) Calculator

Online calculator and formulas for calculating a parallelogram (rhomboid)


This function calculates the properties of a parallelogram for a given side a and b and the angle α in degrees or radians. To calculate the parallelogram, enter the known parameters, select the angle unit degrees or radians. Then click the 'Calculate' button.


Parallelogram calculator

 Select the angle measure
Angle unit  
 Input
Side a
Side b
Angle α
Decimal places
 Results
Area A
Perimeter P
Height ha
Height hb
Diagonal e
Diagonal f
Angle β


Formulas for calculating a parallelogram


Area (A)

\(\displaystyle A = b · h_a\)       \(\displaystyle =a · h_b\)       \(\displaystyle =a · b· sin(α)\)

Length (l)

\(\displaystyle a = \frac{A}{h_b}\)       \(\displaystyle = \frac{A}{b · sin(α)}\)       \(\displaystyle = \frac{A }{ b · sin(β)}\)

Width (b)

\(\displaystyle b = \frac{A}{h_a}\)       \(\displaystyle = \frac{A}{a · sin(α)}\)       \(\displaystyle = \frac{A }{ a · sin(β)}\)

Height (ha)

\(\displaystyle h_a = \frac{A}{b}\)       \(\displaystyle = sin(α) · a\)       \(\displaystyle = sin(β) · a\)

Height (hb)

\(\displaystyle h_b = \frac{A}{a}\)       \(\displaystyle = sin(α) ·b\)       \(\displaystyle = sin(β) ·b\)

Perimeter (P)

\(\displaystyle P = 2 ·(a + b)\)       \(\displaystyle = 2 · \frac{h_a}{sin(α)} + (2 · b)\)

Diagonal (e)

\(\displaystyle e = \sqrt{a^2 + b^2 - 2 · a · b · cos(β)}\)

Diagonal (f)

\(\displaystyle f = \sqrt{a^2 + b^2; - 2 · a · b · cos(α)}\)

Angle (α)

\(\displaystyle α = asin\left(\frac{A}{a · b}\right)\)


SquareRectangleGolden RectangleRectangle to SquareRhombus, given varios parameterRhombus , given diagonal e, fParallelogram, given 2 sides and angleParallelogram area, given side and heightTrapezoidCyclic QuadrilateralGeneral QuadrilateralConcave QuadrilateralArrowhead QuadrilateralCrossed SquareFrameKite, given 2 diagonal and distanceKite Area, given 2 diagonalHalf Square KiteRight Kite"




Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?