Vektor Addition
Formel und Beispiele zur Addition von Vektoren
Im folgenden Artikel werden Vektoradditionen unter Verwendung von Vektoren einer Länge mit zwei oder drei Elemente beschrieben. Grundsätzlich können Vektoren beliebig viele Elemente enthalten.
Vektoren können addiert werden indem die einzelnen Elemente addiert werden. Vektoren lassen sich aber nur addieren, wenn die Anzahl der Dimensionen und ihre Ausrichung (Spalten oder Zeilenorientiert) gleich ist.
Die folgenden Vektoren können addiert werden. Sie haben die gleiche Anzahl Elemente und Ausrichtung.
Die Vektoren \(\left[\matrix{X_a\\Y_a}\right] + \left[\matrix{X_b\\Y_b}\right]\) und \(\left[\matrix{X_a\\Y_a\\Z_a}\right] + \left[\matrix{X_b\\Y_b\\Z_b}\right]\) können addiert werden
Die folgenden Vektoren können nicht addiert werden weil sie eine unterschiedliche Anzahl Elemente haben
Die Vektoren \(\left[\matrix{X_a\\Y_a}\right] + \left[\matrix{X_b\\Y_b\\Z_b}\right]\) können nicht addiert werden
Die folgenden Vektoren können nicht addiert werden weil sie eine unterschiedliche Ausrichtung haben
Die Vektoren \([X_a\;Y_a\;Z_a]+ \left[\matrix{X_b\\Y_b\\Z_b}\right]\) können nicht addiert werden
Beispiele
\(\left[\matrix{a\\b}\right] + \left[\matrix{c\\d}\right] = \left[\matrix{a+c\\b+d}\right]\)
\(\left[\matrix{1\\2}\right] + \left[\matrix{3\\4}\right] = \left[\matrix{1+3\\2+4}\right]=\left[\matrix{4\\6}\right] \)
Die Addition an Vektoren höherer Dimension wird nach dem gleichen Prinzip durchgeführt.
\(\left[\matrix{a\\b\\c}\right] + \left[\matrix{x\\y\\z}\right] = \left[\matrix{a+x\\b+y\\c+z}\right]\)
\(\left[\matrix{1\\2\\3}\right] + \left[\matrix{10\\20\\30}\right] = \left[\matrix{1+10\\2+20\\3+30}\right] =\left[\matrix{11\\22\\33}\right] \)
Grafische Vektoraddition
Die folgenden Abbildung zeigt die grafische Vektor Addition des Ausdruckes
\(\left[\matrix{2\\4}\right] + \left[\matrix{4\\2}\right] = \left[\matrix{2+4\\4+2}\right]=\left[\matrix{6\\6}\right] \)
Zuerst wird die Linie des erste Vektor (rot) vom Nullpunkt zur Position x=2, y=4 gezeichnet.
Dann wird von der Spitze des ersten Vektors der zweite Vektors (gelb) zur Position um 4 Einheiten nach rechts und zwei Einheiten nach oben gezeichnet.
Der Summenvektor (blau) ist bestimmt durch die Linie vom Fußpunkt des ersten zur Spitze des zweiten Vektors.
Die Subtraktion von Vektoren ist identisch mit der Addition von Vektoren, aber mit negativen Operator. Für die Vektorsubtraktion gelten auch die gleichen Regeln wie für die Verktoraddition.
Weitere Informationen zur Vektorsubtraktion finden Sie hier.
Vektor Addition online berechnen →
|