Spatprodukt berechnen

Formeln und Beispiele zum Berechnen des Vektor Spatprodukt


Mit dem Spatprodukt wird das Volumen berechnen, das von drei Vektoren aufgespannt wird.

1. Spatprodukt über Kreuzprodukt und Skalarprodukt berechnen

\(\displaystyle Spatprodukt = (\vec{a} \times \vec{b})·\vec{c} \) \(\displaystyle = \left( \left[\matrix{a_1\\a_2\\a_3}\right] \times \left[\matrix{b_1\\b_2\\b_3}\right]\right) ·\left[\matrix{c_1\\c_2\\c_3}\right] \)

Beispiel

\(\displaystyle \vec{a}=\left[\matrix{1\\1\\1}\right] \; \vec{b}=\left[\matrix{2\\1\\3}\right] \;\vec{c}=\left[\matrix{6\\0\\-2}\right] \)

Kreuzprodukt berechnen

\(\displaystyle \;\;\; \left[\matrix{a_1\\a_2\\a_3}\right] \times \left[\matrix{b_1\\b_2\\b_3}\right] =\left[\matrix{a_2·b_3-a_3·b_2\\a_3·b_1-a_1·b_3\\a_1·b_2-a_2·b_1}\right] \)

\(\displaystyle = \left[\matrix{1\\1\\1}\right] \times \left[\matrix{2\\1\\3}\right] =\left[\matrix{1·3-1·1\\1·2-1·3\\1·1-1·2}\right] =\left[\matrix{2\\-1\\-1}\right]\)

Skalarprodukt berechnen

\(\displaystyle \left[\matrix{x_1\\x_2\\x_3}\right] \cdot \left[\matrix{y_1\\y_2\\y_3}\right] \) \( = x_1\cdot y_1 + x_2\cdot y_2 +x_3\cdot y_3\)

\(\displaystyle \left[\matrix{2\\-1\\-1}\right] \cdot \left[\matrix{6\\0\\-2}\right] \) \( = 2\cdot 6 + (-1)\cdot 0 +(-1)\cdot(-2)\) \(\displaystyle = 12 +0+2=14\)

2. Spatprodukt über eine Matrix berechnen

Das Spatprodukt kann auch über die Determinante einer Matrix berechnet werden.

\(\displaystyle D=\left[\matrix{a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3} \right]\)
\(\displaystyle D=\left|\matrix{1&2&6\\1&1&0\\1&3&-2}\right|\)

\(\displaystyle V= 1\cdot1\cdot(-2)+2\cdot0\cdot1 +6\cdot1\cdot3\) \(\displaystyle + 6\cdot1\cdot1 -1\cdot0\cdot3 -2\cdot1\cdot(-2)=14\)

Vektor Spatprodukt online berechnen →


Weitere Vektor Berechnungen

Vektor Definition
Vektor berechnen
Vektor Addition
Vektor Subtraktion
Vektor Betrag
Vektor Skalarprodukt
Vektor Kreuzprodukt
Winkel zwischen Vektoren
Vektor Spatprodukt


Ist diese Seite hilfreich?            
Vielen Dank für Ihr Feedback!

Das tut uns leid

Wie können wir die Seite verbessern?