Deltoidal Hexecontahedron

Calculator and formulas for the deltoidal hexecontahedron


This function calculates various parameters of a deltoidal hexecontahedron. Entering one value is sufficient for the calculation; all others are calculated from it.

The deltoidal hexacontahedron is a convex polyhedron composed of 60 deltoids. It is dual to the rhombicicosidodecahedron and has 62 vertices and 120 edges.

To perform the calculation select the property you know from the menu and enter its value. Then click on the 'Calculate' button.



Deltoidal hexecontahedron

 Eingabe
Argument type
Argument value
Decimal places
 Results
Long edge a
short edge b
Short diagonal e
Long diagonal f
Surface S
Volume V
Midsphere radius RK
Insphere radius RI
Deltoidal Hexecontahedron

Deltoidal Hexecontahedron

Formeln zum Deltoidalhexakontaeder


Surface (\(\small{S}\))

\(\displaystyle S=\frac{9}{11}· a^2·\sqrt{10·(157+31·\sqrt{5})}\) \(\displaystyle \;\;\;\; ≈a^2·38.92\)

Volume (\(\small{V}\))

\(\displaystyle V=\frac{45}{11}· a^3·\sqrt{\frac{370+164·\sqrt{5}}{25}}\) \(\displaystyle \;\;\;\; ≈a^3·22.21\)

Midsphere radius (\(\small{R_K}\))

\(\displaystyle R_K=\frac{3}{20}· a·(5+3·\sqrt{5})\) \(\displaystyle \;\;\;\; ≈a·1.756\)

Insphere radius (\(\small{R_I}\))

\(\displaystyle R_I=\frac{3}{2}· a·\sqrt{\frac{135+59·\sqrt{5}}{205}}\) \(\displaystyle \;\;\;\; ≈a·1.712\)

Größen des Drachenvierecks


Long edge (\(\small{a}\))

\(\displaystyle a=\frac{22·b}{3·(7-\sqrt{5})}\) \(\displaystyle \;\;\;\; ≈b·1.54\)

Short edge (\(\small{b}\))

\(\displaystyle b=\frac{3· a·(7-\sqrt{5})}{22}\) \(\displaystyle \;\;\;\; ≈\frac{a}{1.54}\)

Short diagonal (\(\small{e}\))

\(\displaystyle e= 3·a ·\sqrt{\frac{5-\sqrt{5}}{20}}\) \(\displaystyle \;\;\;\; ≈a· 1.115\)

Long diagonal (\(\small{f}\))

\(\displaystyle f=\frac{a}{11} ·\sqrt{\frac{470+156·\sqrt{5}}{5}}\) \(\displaystyle \;\;\;\; ≈a· 1.163\)

Side angle (\(\small{\alpha}\))

\(\displaystyle cos\;\; \alpha=\frac{1}{10}·(5-2·\sqrt{5})\) \(\displaystyle \;\; ≈86°\;58'\;27''\)

Base angle (\(\small{\beta}\))

\(\displaystyle cos\;\; \beta=\frac{1}{40}·(9·\sqrt{5}-5)\) \(\displaystyle \;\; ≈67°\;46'\;59''\)

Head angle (\(\small{\gamma}\))

\(\displaystyle cos\;\; \gamma=-\frac{1}{20}·(5+2·\sqrt{5})\) \(\displaystyle \;\; ≈118°\;16'\;7''\)
Deltoidal Hexecontahedron

Disdyakis TriacontahedronDeltoidal HexecontahedronDeltoidal IcositetrahedronHexakis OctahedronPentagonal IcositetrahedronPentakis DodecahedronRhombic DodecahedronRhombic TriacontahedronTetrakis HexahedronTriakis OctahedronTriakis TetrahedronTriakis Icosahedron




Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?