Disdyakis Triacontahedron

Calculators and formulas for the disdyakis triacontahedron


This function calculates various parameters of a disdyakis triacontahedron. Entering one value is sufficient for the calculation; all others are calculated from it.

The hexakisicosahedron or disdyakistriacontahedron is a convex polyhedron composed of 120 irregular triangles. It has 62 vertices and 180 edges.

To perform the calculation select the property you know from the menu and enter its value. Then click on the 'Calculate' button.


Disdyakis triacontahedron calculator

 Input
Argument type
Argument value
Decimal places
 Results
Long edge a
Medium edge b
Short edge c
Surface S
Volume V
Midsphere radius RK
Insphere radius RI

Disdyakis Triacontahedron

Disdyakis Triacontahedron Triangle

Disdyakis Triacontahedron Formulas


Surface (\(\small{S}\))

\(\displaystyle S=\frac{15}{44}· a^2·\sqrt{10·(417+107·\sqrt{5})}\) \(\displaystyle \;\;\;\; ≈a^2·27.617\)

Volume (\(\small{V}\))

\(\displaystyle V=\frac{25}{88}· a^3·\sqrt{6·(185+82·\sqrt{5}}\) \(\displaystyle \;\;\;\; ≈a^3·13.355\)

Midsphere radius (\(\small{R_K}\))

\(\displaystyle R_K=\frac{a}{8}·(5+3·\sqrt{5})\) \(\displaystyle \;\;\;\; ≈a·1.464\)

Insphere radius (\(\small{R_I}\))

\(\displaystyle R_I=\frac{a}{4}·\sqrt{\frac{15·(275+119·\sqrt{5}}{241}}\) \(\displaystyle \;\;\;\; ≈a·1.451\)

Triangle Size


Long edge (\(\small{a}\))

\(\displaystyle a=\frac{22·b}{3·(4+\sqrt{5})}\) \(\displaystyle \;\;\;\; ≈b·1.176\)

Medium edge (\(\small{b}\))

\(\displaystyle b=\frac{3}{22}·a·(4+\sqrt{5})\) \(\displaystyle \;\;\;\; ≈\frac{a}{1.176}\)

Short edge (\(\small{c}\))

\(\displaystyle c=\frac{5}{44}· a·(7-\sqrt{5})\) \(\displaystyle \;\;\;\; ≈\frac{a}{1.847}\)

Angle (\(\small{α }\))

\(\displaystyle cos\;\; \alpha=\frac{1}{30}·(5-2·\sqrt{5})\) \(\displaystyle \;\; ≈88°\;59'\;30''\)

Angle (\(\small{β}\))

\(\displaystyle cos\;\; \beta=\frac{1}{20}·(15-2·\sqrt{5})\) \(\displaystyle \;\; ≈58°\;14'\;17''\)

Angle (\(\small{γ}\))

\(\displaystyle cos\;\; \gamma=-\frac{1}{24}·(9+5·\sqrt{5})\) \(\displaystyle \;\; ≈32°\;46'\;13''\)

Disdyakis TriacontahedronDeltoidal HexecontahedronDeltoidal IcositetrahedronHexakis OctahedronPentagonal IcositetrahedronPentakis DodecahedronRhombic DodecahedronRhombic TriacontahedronTetrakis HexahedronTriakis OctahedronTriakis TetrahedronTriakis Icosahedron




Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?