Pentagonal Icositetrahedron

Calculators and formulas for the pentagonal icositetrahedron


This function calculates various parameters of a pentagonal icositetrahedron. Entering one value is sufficient for the calculation; all others are calculated from it.

The pentagonicositetrahedron is a polyhedron composed of 24 irregular pentagons. It is dual to the chamfered hexahedron and has 38 vertices and 60 edges.

To perform the calculation select the property you know from the menu and enter its value. Then click on the 'Calculate' button.


Pentagonal icositetrahedron calculator

 Input
Argument type
Argument value
Decimal places
 Results
Long edge a
Short edge b
Surface A
Volume V
Midsphere radius RK
Insphere radius RI

Pentagonal Icositetrahedron

Pentagonal Icositetrahedron Formulas


Tribonacci constant (\(\small{t}\)) und (\(\small{s}\))

\(\displaystyle t ≈ 1.839286755214161 \)
\(\displaystyle s = ( t - 1 ) / 2 = 0.41964337760708 \)

Long edge (\(\small{a}\))

\(\displaystyle a=b·(s+1)\)

Short edge (\(\small{b}\))

\(\displaystyle b=\frac{a}{s+1}\)

Surface (\(\small{S}\))

\(\displaystyle S=\frac{24·a^2·(2+3·s)}{1+2·s}\) \(\displaystyle · \sqrt{\frac{1-s}{1+s}}\)

Volume (\(\small{V}\))

\(\displaystyle V=\frac{4·a^3·(2+3·s)·\sqrt{1-2·s}}{(1+s)·(1-4·s^2)}\)

Midsphere radius (\(\small{R_K}\))

\(\displaystyle R_K=\frac{a}{\sqrt{2·(1+s)·(1-2·s)}}\)

Insphere radius (\(\small{R_I}\))

\(\displaystyle =\frac{a}{2·\sqrt{(1-2·s)·(1-s^2)}}\)


Disdyakis TriacontahedronDeltoidal HexecontahedronDeltoidal IcositetrahedronHexakis OctahedronPentagonal IcositetrahedronPentakis DodecahedronRhombic DodecahedronRhombic TriacontahedronTetrakis HexahedronTriakis OctahedronTriakis TetrahedronTriakis Icosahedron



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?