Hyperbolic Function Calculators
Professional online calculators for hyperbolic and inverse hyperbolic functions
Hyperbolic Functions
Hyperbolic Sine (sinh x)
Hyperbolic sine - fundamental function of hyperbolic geometry
Hyperbolic Cosine (cosh x)
Hyperbolic cosine - describes catenary curves and exponential functions
Hyperbolic Tangent (tanh x)
Hyperbolic tangent - important in neurobiology and physics
Hyperbolic Cotangent (coth x)
Hyperbolic cotangent - reciprocal of hyperbolic tangent
Hyperbolic Secant (sech x)
Hyperbolic secant - reciprocal of hyperbolic cosine
Hyperbolic Cosecant (csch x)
Hyperbolic cosecant - reciprocal of hyperbolic sine
Inverse Hyperbolic Functions
Inverse Hyperbolic Sine (asinh x)
Area hyperbolic sine - inverse function of hyperbolic sine
Inverse Hyperbolic Cosine
(acosh x)
(acosh x)
Area hyperbolic cosine - inverse function of hyperbolic cosine
Inverse Hyperbolic Tangent (atanh x)
Area hyperbolic tangent - inverse function of hyperbolic tangent
Inverse Hyperbolic Cotangent (acoth x)
Area hyperbolic cotangent - inverse function of hyperbolic cotangent
Inverse Hyperbolic Secant
(asech x)
(asech x)
Area hyperbolic secant - inverse function of hyperbolic secant
Inverse Hyperbolic Cosecant (acsch x)
Area hyperbolic cosecant - inverse function of hyperbolic cosecant
About Hyperbolic Functions
Hyperbolic functions are fundamental mathematical functions of great importance in various fields of science and engineering:
- Physics - Relativity theory
- Engineering - Catenary curves
- Mathematics - Hyperbolic geometry
- Biology - Growth models
- Statistics - Distributions
- AI/ML - Activation functions
Important Function Classes
Basic Functions
sinh x = (eˣ - e⁻ˣ)/2
cosh x = (eˣ + e⁻ˣ)/2
tanh x = sinh x / cosh x
cosh x = (eˣ + e⁻ˣ)/2
tanh x = sinh x / cosh x
Reciprocals
coth x = 1/tanh x
sech x = 1/cosh x
csch x = 1/sinh x
sech x = 1/cosh x
csch x = 1/sinh x
Identities
cosh² x - sinh² x = 1
tanh² x + sech² x = 1
coth² x - csch² x = 1
tanh² x + sech² x = 1
coth² x - csch² x = 1
Inverse Functions
asinh x = ln(x + √(x² + 1))
acosh x = ln(x + √(x² - 1))
atanh x = ½ln((1+x)/(1-x))
acosh x = ln(x + √(x² - 1))
atanh x = ½ln((1+x)/(1-x))
Tip: Hyperbolic functions have similar properties to trigonometric functions,
but are based on the exponential function rather than the unit circle.
|
|
Quick Reference
sinh 0 = 0
Hyperbolic sine
cosh 0 = 1
Hyperbolic cosine
tanh 0 = 0
Hyperbolic tangent
sech 0 = 1
Hyperbolic secant
cosh² x - sinh² x = 1
Main identity
Function Properties
Domain & Range:
sinh, cosh
ℝ → ℝ
tanh
ℝ → (-1, 1)
atanh
(-1, 1) → ℝ
acosh
[1, ∞) → [0, ∞)
Related Calculator Categories
Trigonometric Functions
Advanced Mathematics
All Areas
|
|