Inverse Hyperbolic Cosine

Calculator for calculating the angle to the inverse hyperbolic cosine

ACosh Calculator

Domain Restriction

The ACosh(x) or inverse hyperbolic cosine shows inverse function behavior with domain x ≥ 1.

Value must be greater than or equal to 1
Results
Angle:

ACosh Function Curve

Curve of the ACosh function

The ACosh function starts at (1,0) and increases logarithmically.
Domain: [1, ∞), Range: [0, ∞)

Inverse Function Behavior of ACosh

The inverse hyperbolic cosine function exhibits characteristic inverse properties:

  • Domain: [1, ∞) (x ≥ 1)
  • Range: [0, ∞) (non-negative angles)
  • Starting Point: ACosh(1) = 0
  • Inverse: Cosh(ACosh(x)) = x for x ≥ 1
  • Monotonicity: Strictly increasing
  • Growth: Logarithmic growth rate

Logarithmic Representation of ACosh Function

The inverse hyperbolic cosine function is expressed through logarithmic functions:

Basic Formula
\[\text{ACosh}(x) = \ln(x + \sqrt{x^2 - 1})\]

Natural logarithm expression for x ≥ 1

Inverse Relation
\[\cosh(\text{ACosh}(x)) = x\]

For x ≥ 1

Formulas for the ACosh Function

Definition
\[\text{ACosh}(x) = \ln(x + \sqrt{x^2 - 1})\]

Natural logarithm expression for x ≥ 1

Inverse Relation
\[\cosh(\text{ACosh}(x)) = x \text{ for } x \geq 1\] \[\text{ACosh}(\cosh(y)) = y \text{ for } y \geq 0\]

Fundamental inverse function properties

Derivative
\[\frac{d}{dx} \text{ACosh}(x) = \frac{1}{\sqrt{x^2 - 1}}\]

First derivative for x > 1

Domain Restriction
\[x \geq 1 \text{ (required for real values)}\]

Returns NaN for x < 1

Asymptotic Behavior
\[\text{ACosh}(x) \approx \ln(2x) \text{ for large } x\]

Logarithmic growth for large arguments

Special Values

Important Values
ACosh(1) = 0 ACosh(2) ≈ 1.317 ACosh(e) ≈ 1.657
Invalid Input
\[x < 1: \text{NaN}\]

Function undefined for x < 1

Starting Point
\[\text{ACosh}(1) = 0\]

Function starts at the point (1, 0)

Properties
  • Inverse function
  • Strictly increasing
  • Logarithmic growth
  • Domain restricted to x ≥ 1
Growth Rate
\[\text{ACosh}(x) \sim \ln(x) \text{ as } x \to \infty\]

Logarithmic growth pattern

Applications

Relativistic physics, hyperbolic geometry, engineering calculations, inverse problems.

Detailed Description of the ACosh Function

Definition and Input

The inverse hyperbolic cosine function ACosh(x) is the inverse function of the hyperbolic cosine. It exhibits characteristic logarithmic growth with a restricted domain.

Critical Property: The ACosh function requires x ≥ 1 for real values!
Input

The argument must be greater than or equal to 1. If the value is less than 1, the function returns NaN (not a valid number).

Result

The result is given in degrees (full circle = 360°) or radians (full circle = 2π). The unit of measurement used is set using the Degrees or Radians menu.

Using the Calculator

Enter a value greater than or equal to 1. The ACosh function calculates the angle that corresponds to the value of the hyperbolic cosine.

Mathematical Properties

Function Properties
  • Domain: [1, ∞) (x ≥ 1)
  • Range: [0, ∞) (non-negative)
  • Starting Point: ACosh(1) = 0
  • Monotonicity: Strictly increasing
Inverse Properties
  • Inverse of hyperbolic cosine function
  • Undoes the effect of Cosh for x ≥ 1
  • Returns the original angle for Cosh values
  • One-to-one correspondence with Cosh
Applications
  • Relativistic Physics: Rapidity calculations
  • Hyperbolic Geometry: Distance measurements
  • Engineering: Catenary problems
  • Mathematics: Inverse hyperbolic problems
Practical Notes
  • Domain restriction: x ≥ 1 (undefined for x < 1)
  • Starting value: ACosh(1) = 0
  • Logarithmic growth: ACosh(x) ≈ ln(2x) for large x
  • Inverse relation: Cosh(ACosh(x)) = x for x ≥ 1

Calculation Examples

Basic Values

ACosh(1) = 0

ACosh(2) ≈ 1.317

ACosh(3) ≈ 1.763

Special Values

ACosh(e) ≈ 1.657

ACosh(5) ≈ 2.292

ACosh(10) ≈ 2.993

Invalid Inputs

ACosh(0) = NaN

ACosh(0.5) = NaN

x < 1: undefined

Physical and Mathematical Applications

Relativistic Physics

Rapidity Calculation:

φ = ACosh(γ)

Where γ is the Lorentz factor

Application: Converting between energy and rapidity.

Hyperbolic Geometry

Distance Formula:

d = ACosh(1 + 2·sinh²(r/2))

Hyperbolic distance calculations

Example: Non-Euclidean geometry applications.

Important Mathematical Relationships

Inverse Function Properties
\[\cosh(\text{ACosh}(x)) = x \text{ for } x \geq 1\] \[\text{ACosh}(\cosh(y)) = y \text{ for } y \geq 0\]

Identities: Fundamental inverse relationships.

Calculus Properties
\[\frac{d}{dx}\text{ACosh}(x) = \frac{1}{\sqrt{x^2-1}}\] \[\int \text{ACosh}(x) dx = x\text{ACosh}(x) - \sqrt{x^2-1} + C\]

Derivative: Involves square root in denominator.


IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree