Hyperbolic Cosecant

Online calculator for calculating the hyperbolic cosecant of an angle

Csch Calculator

Zero Exclusion

The Csch(x) or hyperbolic cosecant shows reciprocal behavior with singularity at x = 0.

Enter any angle except 0 (undefined at zero)
Results
Csch:

Csch Function Curve

Curve of the Csch function

The Csch function has a vertical asymptote at x = 0 and approaches zero as x → ±∞.
Domain: ℝ \ {0}, Range: ℝ \ {0}

Reciprocal Behavior of Csch

The hyperbolic cosecant function exhibits characteristic reciprocal properties:

  • Domain: ℝ \ {0} (all real numbers except 0)
  • Range: ℝ \ {0} (all non-zero real numbers)
  • Singularity: Vertical asymptote at x = 0
  • Reciprocal: Csch(x) = 1/Sinh(x)
  • Symmetry: Odd function Csch(-x) = -Csch(x)
  • Asymptotes: Horizontal at y = 0

Exponential Representation of Csch Function

The hyperbolic cosecant function is expressed through exponential functions:

Basic Formula
\[\text{Csch}(x) = \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}}\]

Reciprocal of hyperbolic sine for x ≠ 0

Reciprocal Relation
\[\text{Csch}(x) \cdot \sinh(x) = 1\]

Perfect reciprocal relationship

Formulas for the Csch Function

Definition
\[\text{Csch}(x) = \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}}\]

Reciprocal of hyperbolic sine for x ≠ 0

Alternative Form
\[\text{Csch}(x) = \frac{2e^x}{e^{2x} - 1} = \frac{2e^{-x}}{1 - e^{-2x}}\]

Alternative exponential expressions

Derivative
\[\frac{d}{dx} \text{Csch}(x) = -\text{Csch}(x) \cdot \text{Coth}(x)\]

Derivative involves both cosecant and cotangent

Symmetry Property
\[\text{Csch}(-x) = -\text{Csch}(x)\]

Odd function (antisymmetric)

Asymptotic Behavior
\[\lim_{x \to 0^+} \text{Csch}(x) = +\infty\] \[\lim_{x \to 0^-} \text{Csch}(x) = -\infty\] \[\lim_{x \to \pm\infty} \text{Csch}(x) = 0\]

Vertical asymptote at origin, horizontal at y = 0

Special Values

Important Values
Csch(1) ≈ 0.851 Csch(2) ≈ 0.276 Csch(ln(2)) ≈ 1.333
Singularity
\[x = 0: \pm\infty\]

Function has vertical asymptote at x = 0

Zero Asymptote
\[\lim_{x \to \pm\infty} \text{Csch}(x) = 0\]

Function approaches zero for large arguments

Properties
  • Reciprocal function
  • Odd function symmetry
  • Vertical asymptote at x = 0
  • Horizontal asymptote at y = 0
Reciprocal Relation
\[\text{Csch}(x) \cdot \text{Sinh}(x) = 1\]

Perfect reciprocal of hyperbolic sine

Applications

Quantum field theory, signal processing, soliton theory, mathematical physics.

Detailed Description of the Csch Function

Definition and Input

The hyperbolic cosecant function Csch(x) is the reciprocal of the hyperbolic sine function. It exhibits characteristic reciprocal behavior with a vertical asymptote at the origin and horizontal asymptote at zero.

Critical Property: The Csch function has a singularity at x = 0!
Input

The angle is given in degrees (full circle = 360°) or radians (full circle = 2π). The unit of measurement used is set using the Degrees or Radians menu. Note: The function is undefined at x = 0.

Result

The result can be any non-zero real number. For large positive or negative arguments, the function approaches zero exponentially.

Using the Calculator

Enter any angle value except 0. The Csch function calculates the hyperbolic cosecant, which is the reciprocal of the hyperbolic sine.

Mathematical Properties

Function Properties
  • Domain: ℝ \ {0} (all real numbers except 0)
  • Range: ℝ \ {0} (all non-zero real numbers)
  • Singularity: Vertical asymptote at x = 0
  • Symmetry: Odd function Csch(-x) = -Csch(x)
Reciprocal Properties
  • Reciprocal of hyperbolic sine function
  • Vertical asymptote at x = 0
  • Horizontal asymptote at y = 0
  • Two separate branches on either side of x = 0
Applications
  • Quantum Field Theory: Scattering amplitudes
  • Soliton Theory: Nonlinear wave solutions
  • Signal Processing: Pulse shape analysis
  • Mathematical Physics: Special function theory
Practical Notes
  • Singularity at x = 0: Function diverges to ±∞
  • Zero asymptote: Approaches 0 as x → ±∞
  • Odd function: Csch(-x) = -Csch(x)
  • Reciprocal relation: Csch(x) = 1/Sinh(x)

Calculation Examples

Small Positive Values

Csch(0.5) ≈ 1.919

Csch(1) ≈ 0.851

Csch(2) ≈ 0.276

Negative Values

Csch(-0.5) ≈ -1.919

Csch(-1) ≈ -0.851

Csch(-2) ≈ -0.276

Asymptotic Behavior

x → 0⁺: Csch(x) → +∞

x → 0⁻: Csch(x) → -∞

x → ±∞: Csch(x) → 0

Physics and Mathematical Applications

Soliton Theory

Soliton Solutions:

u(x,t) = A·Csch(k(x-vt))

Nonlinear wave solutions

Application: Pulse propagation in optical fibers.

Quantum Field Theory

Scattering Amplitudes:

Form factors in particle physics

Feynman diagram calculations

Example: Electromagnetic form factors in QED.

Important Mathematical Relationships

Reciprocal Function Properties
\[\text{Csch}(x) = \frac{1}{\sinh(x)}\] \[\text{Csch}(x) \cdot \sinh(x) = 1\]

Reciprocal Relationship: Perfect inverse of hyperbolic sine.

Calculus Properties
\[\frac{d}{dx}\text{Csch}(x) = -\text{Csch}(x)\text{Coth}(x)\] \[\int \text{Csch}(x) dx = -\ln|\text{Csch}(x) + \text{Coth}(x)| + C\]

Derivative: Product of cosecant and cotangent.


IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree