Hexadecagon

Calculator and formulas for a regular hexadecagon


This function calculates various parameters of a hexadecagon.

To perform the calculation, select the property you know and enter its value. Then click the 'Calculate' button.


Hexadecagon calculation

 Input
Argument type
Argument value
Decimal places
 Results
Edge lenght a
Perimeter P
Area A
Diagonal d2
Diagonal d3
Diagonal d4
Diagonal d5
Diagonal d6
Diagonal d7
Diagonal d8
Inner radius ri
Outer radius ro
Hexadekagon

Properties of a hexadecagon


A regular hexadecagon is a polygon consisting of sixteen corners and sixteen sides. If all sixteen sides are the same length, we speak of an equilateral hexadecagon. Even if all the angles at the sixteen corners are the same size, The hexadecagon is called a regular hexadecagon.

For a regular hexadecagon, all interior angles are the same size at 157.5°. The side bisectors, heights and angle bisectors all intersect at the center.

The sum of the interior angles of a regular hexadecagon is 2520° (14 x 180°). This comes from a general formula for polygons, in which the number of vertices of the polygon is used as a variable \(n\):

\((n-2)· 180\ \ \ = (16-2) · 180 \ \ = 14 · 180 =2520°\)

The value of an interior angle of 157.5° results from the formula:

\(\displaystyle \frac{180·(n-2)}{n} \ \ =\frac{180·(16-2)}{16} =157.5° \)

These two formulas apply to all regular polygons. The number of corners is used for n.



Formulas for the regular hexadecagon


Perimeter (\(\small{P}\))

\(\displaystyle P = a · 16 \)

Area (\(\small{A}\))

\(\displaystyle A = 4·a^2· cot\left(\frac{π}{16}\right) \) \(\displaystyle \ \ ≈ a^2· 20.11 \)

Diagonal (\(\small{d_2}\))

\(\displaystyle d_2=a· \frac{sin(\frac{2 ·π}{16})}{sin(\frac{π}{16})} \) \(\displaystyle \ \ ≈ a·1.96\)

Diagonal (\(\small{d_3}\))

\(\displaystyle d_3= a· \frac{sin(\frac{3 ·π}{16})}{sin(\frac{π}{16})} \) \(\displaystyle \ \ ≈ a·2.85\)

Diagonal (\(\small{d_4}\))

\(\displaystyle d_4= a·\frac{ \frac{\sqrt{2}} {2} }{ {sin(\frac{π}{16})}} \) \(\displaystyle \ \ ≈ a·3.63\)

Diagonal (\(\small{d_5}\))

\(\displaystyle d_5= a· \frac{sin(\frac{5 ·π}{16})}{sin(\frac{π}{16})} \) \(\displaystyle \ \ ≈ a·4.26\)

Diagonal (\(\small{d_6}\))

\(\displaystyle d_6= a· \frac{sin(\frac{6 ·π}{16})}{sin(\frac{π}{16})} \) \(\displaystyle \ \ ≈ a·4.74\)

Diagonal (\(\small{d_7}\))

\(\displaystyle d_7= a· \frac{sin(\frac{7 ·π}{16})}{sin(\frac{π}{16})} \) \(\displaystyle \ \ ≈ a·5.03\)

Diagonal (\(\small{d_8}\))

\(\displaystyle d_8= \frac{a}{sin(\frac{π}{16})} \) \(\displaystyle \ \ ≈ a·5.13\)

Height (\(\small{h}\))

\(\displaystyle h=d_7 \)

Inner circle radius (\(\small{r_i}\))

\(\displaystyle ri=a · \frac{1}{2}·cot\left(\frac{180°}{16}\right)\) \(\displaystyle \ \ =a ·\frac{1}{2}·cot(11.25)\)

Circumcirle radius (\(\small{r_c}\))

\(\displaystyle r_c= \frac{a}{2·sin(\frac{180°}{16})} \) \(\displaystyle \ \ = \frac{a}{2·sin(11.25)} \) \(\displaystyle \ \ ≈\frac{a}{0.39} \)
Hexadekagon


More polygons

TriangleSquarePentagonHexagonHeptagonOctagonNonagonDecagonHendecagonDodecagonHexadecagonN-GonPolygon ringConcave hexagonAxial Symmetric PentagonIrregular, stretched HexagonIrregular, stretched OctagonPentagramHexagramOctagramStar of Lakshmi





Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?