Snub Cube

Online calculator and formulas for calculating a snub cube


This function calculates various properties of a snub cube. A snub cube is a solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

To perform the calculation, select the property you know and enter its value. Then click on the 'Calculate' button.


Snub Cube Calculator

 Input
Decimal places
 Results
Edge length a
Volume V
Surface S
Outer radius rc
Midsphere radius rm

Snub Cube

Snub Cube Formulas


Constant\(\small{t}\)

\(\displaystyle t=\frac{1+\sqrt[3]{19+3·\sqrt{33}} +\sqrt[3]{19-3·\sqrt{33}}}{3}\) \(\displaystyle ≈1.8392867552\)

Volume \(\small{V}\)

\(\displaystyle V=\frac{a^3 · (3 ·\sqrt{t-1} +4· \sqrt{t+1}}{3·\sqrt{2-t}}\)

Surface \(\small{S}\)

\(\displaystyle S= 2 · a^2 ·(3+4·\sqrt{3})\)

Outer radius \(\small{r_c}\)

\(\displaystyle r_c= a·\sqrt{\frac{3-t}{4·(2-t)}}\)

Midsphere radius \(\small{r_m}\)

\(\displaystyle r_m= a·\sqrt{\frac{1}{4·(2-t)}}\)

Edge length \(\small{a}\)

\(\displaystyle a= \sqrt[3]{ \frac{2 · V ·\sqrt{2-t}}{3·\sqrt{t-1}+4 ·\sqrt{t+1}}} \)

\(\displaystyle a= \sqrt{ \frac{S}{2 ·(3+4·\sqrt{3})}} \)

\(\displaystyle a=\frac{r_c}{\sqrt{\displaystyle\frac{3-t}{4·(2-t)}}}\)

\(\displaystyle a=\frac{r_m}{\sqrt{\displaystyle\frac{1}{4·(2-t)}}}\)

Cuboctahedron Icosidodecahedron Rhombicosidodecahedron Rhombicuboctahedron Snub cube Truncated cube Snub dodecahedron Truncated cuboctahedron Truncated dodecahedron Truncated icosahedron Truncated icosidodecahedron Truncated octahedron Truncated tetrahedron



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?