Snub Cube
Online calculator and formulas for calculating a snub cube
This function calculates various properties of a snub cube. A snub cube is a solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.
To perform the calculation, select the property you know and enter its value. Then click on the 'Calculate' button.
|
Snub Cube Formulas
Constant\(\small{t}\)
\(\displaystyle t=\frac{1+\sqrt[3]{19+3·\sqrt{33}} +\sqrt[3]{19-3·\sqrt{33}}}{3}\) \(\displaystyle ≈1.8392867552\)
Volume \(\small{V}\)
\(\displaystyle V=\frac{a^3 · (3 ·\sqrt{t-1} +4· \sqrt{t+1}}{3·\sqrt{2-t}}\)
Surface \(\small{S}\)
\(\displaystyle S= 2 · a^2 ·(3+4·\sqrt{3})\)
Outer radius \(\small{r_c}\)
\(\displaystyle r_c= a·\sqrt{\frac{3-t}{4·(2-t)}}\)
Midsphere radius \(\small{r_m}\)
\(\displaystyle r_m= a·\sqrt{\frac{1}{4·(2-t)}}\)
Edge length \(\small{a}\)
\(\displaystyle a= \sqrt[3]{ \frac{2 · V ·\sqrt{2-t}}{3·\sqrt{t-1}+4 ·\sqrt{t+1}}} \)
\(\displaystyle a= \sqrt{ \frac{S}{2 ·(3+4·\sqrt{3})}} \)
\(\displaystyle a=\frac{r_c}{\sqrt{\displaystyle\frac{3-t}{4·(2-t)}}}\)
\(\displaystyle a=\frac{r_m}{\sqrt{\displaystyle\frac{1}{4·(2-t)}}}\)
|