Truncated Icosahedron

Calculator and formulas for calculating a truncated Icosahedron


This function calculates various properties of a truncated icosahedron. A truncated icosahedron is created by cutting off the corners of a dodecahedron so that all edges are the same length. It is a polyhedron with 32 sides, 90 edges and 60 vertices. They form 12 regular pentagons and 20 regular hexagons.

To perform the calculation, select the property you know and enter its value. Then click on the 'Calculate' button.


Truncated Icosahedron Calculator

 Input
Decimal places
 Results
Edge length a
Volume V
Surface S
Outer radius rc
Midsphere radius rm
Pentagon radius r5
Hexagon radius r6

Truncated Icosahedron

Truncated Icosahedron Formulas


Volume \(\small{V}\)

\(\displaystyle V=\frac{a^3 · (125+43 ·\sqrt{5}}{4}\)

Surface area \(\small{S}\)

\(\displaystyle S= 3 · a^2 · (10· \sqrt{3}+\sqrt{25+10·\sqrt{5}})\)

Outer radius \(\small{r_c}\)

\(\displaystyle r_c=\frac{a· \sqrt{58+18· \sqrt{5}}}{4}\)

Midsphere radius \(\small{r_m}\)

\(\displaystyle r_m=\frac{3 · a · (1+\sqrt{5})}{4} \)

Pentagon radius (centroid to pentagon face) \(\small{r_5}\)

\(\displaystyle r_5=\frac{a · \sqrt{\frac{1}{10}(125+41 \sqrt{5})}}{2} \)

Hexagon radius (centroid to hexagon face) \(\small{r_6}\)

\(\displaystyle r_6=\frac{a · \sqrt{\frac{3}{2} (7+3\sqrt{5})}}{2} \)

Edge length \(\small{a}\)

\(\displaystyle a= \sqrt[3]{ \frac{4 · V }{125 + 43 ·\sqrt{5}}} \)

\(\displaystyle a= \sqrt{ \frac{S}{3 ·(10· \sqrt{3}+ \sqrt{25+10 \cdot \sqrt{5})}}} \)

\(\displaystyle a=\frac{4·r_c}{\sqrt{(58+18· \sqrt{5})}}\)

\(\displaystyle a=\frac{4 · r_m}{3·(1+ \sqrt{5})} \)

\(\displaystyle a=\frac{2 · r_5}{\sqrt{\frac{1}{10}(125+41 \sqrt{5})}} \)


Cuboctahedron Icosidodecahedron Rhombicosidodecahedron Rhombicuboctahedron Snub cube Truncated cube Snub dodecahedron Truncated cuboctahedron Truncated dodecahedron Truncated icosahedron Truncated icosidodecahedron Truncated octahedron Truncated tetrahedron



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?