Rhombicosidodecahedron

Calculator and formulas for calculating a rhombicosidodecahedron


This function calculates various properties of a rhombicosidodecahedron. A rhombicosidodecahedron is an Archimedean solid. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.

To perform the calculation, select the property you know and enter its value. Then click on the 'Calculate' button.


Rhombicosidodecahedron calculator

 Input
Decimal places
 Results
Edge length a
Volume V
Surface S
Outer radius rc
Midsphere radius rm

 Rhombicosidodecahedron

Rhombicosidodecahedron Formulas


Volume \(\small{V}\)

\(\displaystyle V=\frac{a^3 · (60 +29 ·\sqrt{5})}{3}\)

Surface \(\small{S}\)

\(\displaystyle S= a^2 ·(30+5·\sqrt{3} +3 ·\sqrt{25+10·\sqrt{5}})\)

Outer radius \(\small{r_c}\)

\(\displaystyle r_c=\frac{a·\sqrt{11+4·\sqrt{5}}}{2}\)

Midsphere radius \(\small{r_m}\)

\(\displaystyle r_m=\frac{a·\sqrt{10+4·\sqrt{5}}}{2}\)

Edge length \(\small{a}\)

\(\displaystyle a= \sqrt[3]{ \frac{3 · V }{(60 +29 ·\sqrt{5})}} \)

\(\displaystyle a= \sqrt{ \frac{S}{(30+5·\sqrt{3} +3 ·\sqrt{25+10·\sqrt{5}})}} \)

\(\displaystyle a=\frac{2· r_c}{\sqrt{11+4·\sqrt{5}}}\)

\(\displaystyle a=\frac{2· r_m}{\sqrt{10+4·\sqrt{5}}}\)

Cuboctahedron Icosidodecahedron Rhombicosidodecahedron Rhombicuboctahedron Snub cube Truncated cube Snub dodecahedron Truncated cuboctahedron Truncated dodecahedron Truncated icosahedron Truncated icosidodecahedron Truncated octahedron Truncated tetrahedron



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?