Truncated Icosidodecahedron

Calculator and formulas for calculating a truncated icosidodecahedron


This function calculates various properties of a truncated icosidodecahedron. A truncated icosidodecahedron has 62 faces; 30 squares, 20 regular hexagons, and 12 regular decagons.

To perform the calculation, select the property you know and enter its value. Then click on the 'Calculate' button.


Truncated icosidodecahedron calculator

 Input
Decimal places
 Results
Edge length a
Volume V
Surface S
Outer radius rc
Midsphere radius rm

Truncated Icosidodecahedron

Truncated Icosidodecahedron Formulas


Volume \(\small{V}\)

\(\displaystyle V=a^3 (95+50·\sqrt{5}) \) \(\displaystyle \ \ \ ≈a^3 · 206.8033989\)

Surface \(\small{S}\)

\(\displaystyle S= a^2 · 30 \left(1 +\sqrt{3}+\sqrt{5+2·\sqrt{5}}\right)\) \(\displaystyle \ \ \ ≈ a^2 · 174.2920303 \)

Outer radius \(\small{r_c}\)

\(\displaystyle r_c=\frac{a}{2}·\sqrt{31+12·\sqrt{5}}\)

Midsphere radius \(\small{r_m}\)

\(\displaystyle r_m=\frac{a}{2}·\sqrt{30+12·\sqrt{5}}\)

Edge length \(\small{a}\)

\(\displaystyle a = \sqrt[3]{\frac{V}{95+50·\sqrt{5}}} \)

\(\displaystyle a=\sqrt{\frac{S}{30\cdot (1 +\sqrt{3}+\sqrt{5+2\cdot\sqrt{5}})}}\)

\(\displaystyle a=\frac{2· r_c}{\sqrt{31+12·\sqrt{5}}}\)

\(\displaystyle a=\frac{2· r_m}{\sqrt{30+12·\sqrt{5}}}\)

Cuboctahedron Icosidodecahedron Rhombicosidodecahedron Rhombicuboctahedron Snub cube Truncated cube Snub dodecahedron Truncated cuboctahedron Truncated dodecahedron Truncated icosahedron Truncated icosidodecahedron Truncated octahedron Truncated tetrahedron



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?