Snub Dodecahedron

Calculator and formulas for calculating a snub dodecahedron


This function calculates various properties of a snub Dodecahedron The snub dodecahedron has 92 faces, 12 are pentagons and the other 80 are equilateral triangles. It also has 150 edges, and 60 vertices.

To perform the calculation, select the property you know and enter its value. Then click on the 'Calculate' button.


Snub Dodecahedron calculator

 Input
Decimal places
 Results
Edge length a
Volume V
Surface S
Outer radius rc
Midsphere radius rm

Snub Dodecahedron

Snub Dodecahedron Formulas


Golden ratio

\(\displaystyle φ = \frac{1+\sqrt{5}}{2}≈1.6180339887\)

Cosine of the smaller central angle ΞΆ in the chord pentagon

\(\displaystyle t= \frac{1}{12} (\sqrt[3]{44+12· φ·(9+\sqrt{81·φ-15})} \) \(\displaystyle +\sqrt[3]{44+12·φ ·(9-\sqrt{81·φ-15})}-4)\)

\(\displaystyle t ≈ 0.47157562962194088 \)

Volume \(\small{V}\)

\(\displaystyle V=\frac{a^3}{6·\sqrt{1-2t}}\) \(\displaystyle · \left(3·\sqrt{10·(9t-2+(4t-1)\sqrt{5})}+20\sqrt{2+2t}\right) \)

Surface area \(\small{S}\)

\(\displaystyle S= a^2 ·\left(20 ·\sqrt{3}+3·\sqrt{25+10·\sqrt{5}}\right)\)

Outer radius \(\small{r_c}\)

\(\displaystyle r_c=\frac{a}{2}·\sqrt{\frac{2-2t}{1-2t}}\)

Midsphere radius \(\small{r_m}\)

\(\displaystyle r_m= \frac{a}{2· \sqrt{1-2t}}\)

Edge length \(\small{a}\)

\(\displaystyle a= \sqrt[3]{ \frac{6·\sqrt{1-2t}·V}{3·\sqrt{10·(9t-2+(4t-1)\sqrt{5})}+20\sqrt{2+2t}}}\)

\(\displaystyle a= \sqrt{ \frac{S}{20 ·\sqrt{3}+3·\sqrt{25+10·\sqrt{5}}}} \)

\(\displaystyle a=\frac{2· r_c}{\sqrt{\displaystyle\frac{2-2t}{1-2t}}}\)

\(\displaystyle a= r_m · 2· \sqrt{1-2t}\)

Cuboctahedron Icosidodecahedron Rhombicosidodecahedron Rhombicuboctahedron Snub cube Truncated cube Snub dodecahedron Truncated cuboctahedron Truncated dodecahedron Truncated icosahedron Truncated icosidodecahedron Truncated octahedron Truncated tetrahedron



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?