Matrizen Berechnen
Kurze Einführung zur Berechnung von Matrizen
Mit Matrizen kann genauso gerechnet werden wie mit Zahlen. Wir können Matrizen berechnen, wenn wir die Regeln für ihre Arithmetik befolgen.
Wegen dieser Ähnlichkeit ist es nützlich, zwischen Zahlen und Matrizen zu unterscheiden, indem man Zahlensymbole mit Kleinbuchstaben \((a, b, x, y)\) und Matrizen mit Großbuchstaben \((A, B, X, Y)\) schreibt.
Addition und Subtraktion von Matrizen
Zur Matrizen-Addition oder Subtraktion müssen die Matrizen übereinstimmen. Das heißt, sie müssen die gleiche Anzahl von Zeilen und die gleiche Anzahl von Spalten haben.
Um eine Matrizenaddition auszuführen, werden die entsprechenden Matrizenelemente addiert.
Weitere Beispiele zur Matrizenaddition finden Sie hier
Weitere Beispiele zur Matrizensubtraktion finden Sie hier
Matrizen Skalar Multiplikationn
Eine Matrix kann mit einem Skalar (d. h. mit einer gewöhnlichen Zahl) multiplizieren werden, indem jedes Element in der Matrix mit dieser Zahl multipliziert wird:
Matrizenmultiplikation
Es gibt eine spezielle Regel für Multiplikationen von Matrizen, die so konstruiert sind, dass sie simultane Gleichungen mithilfe von Matrizen darstellen können.
Zwei Matrizen können multipliziert werden, wenn die Spaltenanzahl der linken Matrix mit der Zeilenanzahl der rechten Matrix übereinstimmt.
Das Produkt einer Matrix wird berechnet, indem die Produktsummen der Paare aus den Zeilenvektoren der ersten Matrix und den Spaltenvektoren der zweiten Matrix berechnet wird
Das erste Element des Produkts \(C\), ist die Summe der Produkte jedes Elements der ersten Reihe von \(A\), und dem entsprechenden Element der ersten Spalte von \(B\)
Weitere Beispiele zur Matrizenmultiplikation finden Sie hier
|