Concave Quadrilateral calculator

Calculator and formulas for a concave quadrilateral


This function calculates various parameters of a concave quadrilateral.

In a concave quadrilateral, one of the two diagonals lies outside the figure.

To calculate, enter the lengths a, b and c and the angles beta (β) and gamma (γ). Then click on the 'Calculate' button.


Concave Quadrilateral

 Input
Side a
Side b
Side c
Angle β
Angle γ
Decimal places
 Results
Side d
Diagonal e
Diagonal f
Area A
Perimater U
Angle α
Angle δ


concave quadrilateral

Description


A concave quadrilateral has four vertices connected by four side lines. The word “concave” comes from the Latin word “concavus,” which means “curved inward” in English. A concave quadrilateral has at least one corner point curved inwards, so that it is inside the surface.

In a concave square, one of the two diagonals lies outside the figure.


Formulas


Diagonal e

\(\displaystyle e =\sqrt{a^2+b^2-2·a·b·cos(β)} \)

Diagonal f

\(\displaystyle f =\sqrt{b^2+c^2-2·b·c·cos(γ)} \)
\(\displaystyle β_1 =β- arccos\left(\frac{b^2+f^2-c^2}{2·b·f}\right) \)

Side length d

\(\displaystyle d=\sqrt{a^2+f^2-2·a·f·cos(β_1)}\)

Angle α

\(\displaystyle α=arccos\left(\frac{a^2+d^2-f^2}{2·a·d}\right) \)

Angle δ

\(\displaystyle δ=360°-α-β-γ \)

Perimeter P

\(\displaystyle P=a+b+c+d \)

Konkaves Viereck

Area A

\( A=\sqrt{\frac{a+d+f}{2}·\left(\frac{a+d+f}{2}-a\right)·\left(\frac{a+d+f}{2}-d\right)·\left(\frac{a+d+f}{2}-f\right)} \)
\(\ \ \ \ +\;\sqrt{\frac{b+c+f}{2}·\left(\frac{b+c+f}{2}-b\right)·\left(\frac{b+c+f}{2}-c\right)·\left(\frac{b+c+f}{2}-f\right)} \)

SquareRectangleGolden RectangleRectangle to SquareRhombus, given varios parameterRhombus , given diagonal e, fParallelogram, given 2 sides and angleParallelogram area, given side and heightTrapezoidCyclic QuadrilateralGeneral QuadrilateralConcave QuadrilateralArrowhead QuadrilateralCrossed SquareFrameKite, given 2 diagonal and distanceKite Area, given 2 diagonalHalf Square KiteRight Kite"




Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?