Rhombus Calculation

Online calculator and formulas for calculating a rhombus


Two parameters are inputted for calculating the rhombus.

  • As the first argument, the side length a or the perimeter P may be entered.
  • As a second argument, you can choose between the height h, the area A, or the angles α and β.

If invalid arguments are entered, e.g. height greater than side length, a error message issued.


Calculate rhombus

 Input
Decimal places
 Results
Length a
Height h
Area A
Perimeter P
Diagonal e
Diagonal f
Angle α
Angle β


Description of a diamond


In geometry, a diamond or rhombus is a flat square with four sides of equal length. Opposite sides are parallel and opposite angles are equal. Here you will find a number of formulas for calculating rhombuses.


Formulas


Area (A)

\(A = a · h\)        \(\displaystyle = \frac{e · f}{2}\)        \(\displaystyle =a^2 · sin(α)\)

Length (a)

\(\displaystyle a = \frac{A}{h}\)         \(\displaystyle = \sqrt{\left(\frac{e}{2}\right)^2 + \left(\frac{f}{2}\right)^2}\)         \(\displaystyle =\frac{h}{sin(α)}\)         \(\displaystyle =\frac{h}{sin(β)}\)

Height (h)

\(\displaystyle h = \frac{A}{a}\)         \(\displaystyle = sin(α) · a\)         \(\displaystyle = sin(β) · a\)

Perimeter (P)

\(\displaystyle P = 4 · a\)         \(\displaystyle = 4 · \frac{h}{sin(α)}\)         \(\displaystyle = 4 · \frac{h}{sin(β)}\)

Diagonal (e)

\(\displaystyle e =\frac{ h }{ sin(α/2)}\)         \(\displaystyle e = a ·\frac{ sin(β)}{ sin(α/2)}\)         \(\displaystyle e = 2 · a · cos\left(\frac{α}{2}\right)\)

Diagonal (f)

\(\displaystyle f =\frac{ h }{ sin(β/2)}\) \(\displaystyle f = a ·\frac{ sin(α)}{ sin(β/2)}\) \(\displaystyle f = 2 · a · cos\left(\frac{β}{2}\right)\)

Angle (β)

\(\displaystyle β =\frac{asin( h) }{a}\)

SquareRectangleGolden RectangleRectangle to SquareRhombus, given varios parameterRhombus , given diagonal e, fParallelogram, given 2 sides and angleParallelogram area, given side and heightTrapezoidCyclic QuadrilateralGeneral QuadrilateralConcave QuadrilateralArrowhead QuadrilateralCrossed SquareFrameKite, given 2 diagonal and distanceKite Area, given 2 diagonalHalf Square KiteRight Kite"




Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?