Spherical Segment Calculation
Calculator and formulas for calculating the volume and surface of a spherical segment
This function calculates the properties of a spherical segment. To perform the calculaton enter the radius of the upper and lower intersection circles and the height of the spherical segment. Then cklick the button 'Calculate'.
|
Formulas for the spherical segment
Radius (\(\small{r}\))
\(\displaystyle r = \sqrt{ a^2 + \left(\frac{ a^2 - b^2 -h^2}{2· h}\right)^2 }\)
Lateral surface (\(\small{M}\))
\(\displaystyle M=2·π·r·h\)
Segment surface area (\(\small{S}\))
\(\displaystyle S=π·( 2· r ·h + a^2 + b^2)\)
Segment volumen (\(\small{V}\))
\(\displaystyle V=\frac{π · h}{6}·(3·a^2 + 3· b^2 + h^2)\)
Distance to top (\(\small{d_t}\))
\(\displaystyle d_t=\frac{a^2 - b^2 - h^2}{2 · h}\)
Distance to center (\(\small{d_m}\))
\(\displaystyle d_m=\frac{a^2 - b^2 - h^2}{2 · h}\)
Round solids functions
Sphere • Spherical cap • Spherical sector • Spherical segment • Spherical ring • Spherical wedge • Spherical corner • Spheroid • Triaxial ellipsoid • Ellipsoid volume • Spherical shell • Solid angles • Torus • Spindle torus • Oloid • Elliptic Paraboloid
|