Spheroid Calculation

Calculator and formulas for calculating a spheroid (ellipsoid of revolution)


This function calculates the volume and the surface area of a spheroid. A spheroid (ellipsoid of revolution) is an elliptical body, as it arises from the rotation of an ellipse around the axis a. In contrast to a three-axis ellipsoid, axes b and c are the same length.

A distinction is made between:

  • the oblate ellipsoid, a < b, c (shape of a lens)
  • the prolate ellipsoid, a > b, c (shape of rugby ball)

To calculate the spheroid, enter the lengths of the two semiaxes a and b. Then click the 'Calculate' button.


Spheroid calculator

 Input
Semiaxis a
Semiaxis b
Decimal places
 Results
Volume V
Surface area S
spheroid
oblates ellipsoid

spheroid
prolate ellipsoid

Formulas for the spheroid


To calculate the surface, apply to oblates and prolate ellipsoids different formulas.


Volume (\(\small{V}\))


\(\displaystyle V=\frac{4}{3} ·π · a·b·c\)

Surface of the oblates ellipsoid (a < b) (\(\small{S}\))


\(\displaystyle S=\frac{2\cdot π\cdot a^2\cdot b}{\sqrt{b^2-a^2}} \left[\frac{b}{a^2} \sqrt{b^2-a^2} +arcsinh\left(\frac{\sqrt{b^2-a^2}}{a} \right) \right] \)

Surface of the prolate ellipsoid (a > b) (\(\small{S}\))


\(\displaystyle S=\frac{2\cdot π\cdot a^2\cdot b}{\sqrt{a^2-b^2}} \left[\frac{b}{a^2} \sqrt{a^2-b^2} +arcsin\left(\frac{\sqrt{a^2-b^2}}{a} \right) \right] \)

Surface of a sphere (a = b) (\(\small{S}\))


\(\displaystyle S=4· a ·b·π\)

Round solids functions

SphereSpherical capSpherical sectorSpherical segmentSpherical ringSpherical wedgeSpherical cornerSpheroidTriaxial ellipsoidEllipsoid volumeSpherical shellSolid anglesTorusSpindle torusOloidElliptic Paraboloid



Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?