Calculate Riemann Zeta Function
Online calculator and formulas for computing the Riemann Zeta Function - Key to prime number distribution
Riemann Zeta Function Calculator
Riemann Zeta Function
The ζ(s) or Riemann Zeta Function is one of the most important functions in analytic number theory and closely connected to prime number distribution.
Riemann Zeta Function Curve
Mouse pointer on the graph shows the values.
At s = 1 the result is ∞. The Y-scale is limited to ±20 for better visualization.
Formulas for the Riemann Zeta Function
Dirichlet Series
For Re(s) > 1
Euler Product
Product over all primes p
Integral Representation
For Re(s) > 1
Functional Equation
Riemann functional equation
Analytic Continuation
Laurent series around s = 1 with Stieltjes constants γₙ
Special Values
Famous Values
Prime Numbers
Euler product shows deep connection to prime number theory
Pole at s = 1
Simple pole with residue 1
Applications
Prime number theory, analytic number theory, mathematical physics and cryptography.
The Riemann Hypothesis
One of the most famous unsolved problems in mathematics:
Millennium Problem: One of the seven Millennium Problems with a prize of 1 million US dollars. The hypothesis has profound implications for the distribution of prime numbers.
Detailed Description of the Riemann Zeta Function
Mathematical Definition
The Riemann Zeta Function is one of the central functions in analytic number theory. It was systematically studied by Bernhard Riemann and reveals a deep connection between prime numbers and analysis.
Using the Calculator
Enter the argument s and click 'Calculate'. For s = 1 the function is undefined (pole). The series converges for Re(s) > 1.
Historical Background
The function was originally introduced by Leonhard Euler as a Dirichlet series. Bernhard Riemann recognized its fundamental importance for prime number theory and proved the famous functional equation.
Properties and Applications
Mathematical Applications
- Prime number theorem and prime distribution
- Analytic number theory (L-functions)
- Additive combinatorics
- Modular forms and automorphic functions
Physical Applications
- Quantum chaos and spectral theory
- Statistical mechanics (partition functions)
- String theory and quantum field theory
- Critical phenomena and phase transitions
Special Properties
- Euler Product: Connection to prime numbers
- Functional Equation: Symmetry around s = 1/2
- Zeros: Triviale (-2, -4, -6, ...) and nontrivial
- Pol: Einfacher Pol bei s = 1 mit Residuum 1
Interesting Facts
- ζ(2) = π²/6 löst das Basler Problem
- ζ(-1) = -1/12 (Ramanujan-Summe)
- Die ersten 10¹³ nichttrivialen Nullstellen liegen auf der kritischen Linie
- Verbindung zu Random Matrix Theory
Berechnungsbeispiele
Beispiel 1
ζ(2) = π²/6 ≈ 1.6449
Lösung des Basler Problems (Euler, 1734)
Beispiel 2
ζ(4) = π⁴/90 ≈ 1.0823
Weitere exakte Lösung von Euler
Beispiel 3
ζ(0) = -1/2
Analytische Fortsetzung
Verbindung zur Primzahlentheorie
Euler-Produkt
Das Euler-Produkt zeigt die fundamentale Verbindung zu Primzahlen:
Diese Darstellung ist der Schlüssel zum Verständnis der Primzahlenverteilung.
Primzahlsatz
Die Nullstellen der Zeta-Funktion bestimmen die Genauigkeit des Primzahlsatzes:
Wobei π(x) die Anzahl der Primzahlen ≤ x ist.
|