Exponential Function for Complex Numbers
Calculation of \(e^z\) using Euler's formula
Exp Function Calculator
Exponential Function \(e^z\)
The exponential function for complex numbers is calculated by Euler's formula: \(e^{x+iy} = e^x(\cos y + i\sin y)\). It is the inverse of the complex logarithm.
Exp Properties
Euler's Formula
One of the most beautiful formulas in mathematics!
Complete Formula
Important Properties
- \(e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}\) (Functional equation)
- \(e^z \neq 0\) for all \(z \in \mathbb{C}\)
- \(e^{z + 2\pi i} = e^z\) (Periodicity)
- Inverse: \(\ln(e^z) = z + 2\pi i k\)
Special Cases
- \(e^0 = 1\)
- \(e^{i\pi} = -1\) (Euler's identity)
- \(e^{i\pi/2} = i\)
- \(e^{2\pi i} = 1\)
Formula for the Exponential Function of Complex Numbers
The exponential function for complex numbers extends the real exponential function by using Euler's formula.
Definition
For \(z = x + iy\):
\[e^z = e^{x+iy} = e^x \cdot e^{iy}\]
\[= e^x(\cos y + i\sin y)\]
Components
Real part: \(\text{Re}(e^z) = e^x \cos y\)
Imaginary part: \(\text{Im}(e^z) = e^x \sin y\)
Calculation Example
Calculation: \(e^{3+5i}\)
Step 1: Components
Given: \(z = 3 + 5i\)
Real part: \(x = 3\)
Imaginary part: \(y = 5\)
Step 2: Euler's formula
\(e^{3+5i} = e^3 \cdot e^{5i}\)
\(= e^3(\cos 5 + i\sin 5)\)
Step 3: Exponential
\(e^3 \approx 20.086\)
Scale factor for real and imaginary parts
Step 4: Trigonometric values
\(\cos(5) \approx 0.284\)
\(\sin(5) \approx -0.959\)
(Angles in radians!)
Step 5: Final result
Real part: \(20.086 \cdot 0.284 \approx 5.70\)
Imaginary part: \(20.086 \cdot (-0.959) \approx -19.26\)
\(e^{3+5i} \approx 5.70 - 19.26i\)
Geometric Interpretation
Magnitude: \(|e^{3+5i}| = e^3 \approx 20.086\)
The magnitude depends only on the real part!
Argument: \(\arg(e^{3+5i}) = 5\) rad
The argument is the imaginary part!
Important Properties and Theorems
Functional equation
The exponential function turns addition into multiplication.
Periodicity
The complex exponential function is periodic with period \(2\pi i\).
No zeros
The exponential function has no zeros in the complex plane.
Euler's identity
The most famous formula in mathematics connects the five most important constants: \(e\), \(i\), \(\pi\), 1 and 0.
Polar form relation
Any complex number can be represented in polar form with the exponential function: \(r = |z|\), \(\phi = \arg(z)\).
Derivative
The exponential function is its own derivative - also in the complex domain!
Exponential Function - Detailed Description
Leonhard Euler
The Euler's formula was discovered by the Swiss mathematician Leonhard Euler (1707-1783) and is considered one of the most beautiful formulas in mathematics.
\[e^{ix} = \sum_{n=0}^{\infty}\frac{(ix)^n}{n!}\] \[= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + \ldots\] \[= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots\right)\] \[= \cos(x) + i\sin(x)\]
Practical Applications
- Electrical engineering: alternating current calculations, impedance
- Signal processing: Fourier transform
- Quantum mechanics: wave functions
- Vibration theory: complex amplitude
Geometric Meaning
Multiplication by \(e^{i\phi}\) corresponds to a rotation by angle \(\phi\) in the complex plane.
\[z' = z \cdot e^{i\phi}\] This rotates the number \(z\) by angle \(\phi\) counterclockwise about the origin.
Relation to the Logarithm
The exponential function is the inverse function of the complex logarithm:
Note: The complex logarithm is multivalued!
\(\ln(e^z) = z + 2\pi i k\) with \(k \in \mathbb{Z}\)
Important Notes
Be careful with angles!
- Angle \(y\) in Euler's formula must always be in radians
- Conversion: \(1° = \frac{\pi}{180}\) rad
- Observe periodicity: \(e^{iy}\) has period \(2\pi\)
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •