Exponential Function for Complex Numbers

Calculation of \(e^z\) using Euler's formula

Exp Function Calculator

Exponential Function \(e^z\)

The exponential function for complex numbers is calculated by Euler's formula: \(e^{x+iy} = e^x(\cos y + i\sin y)\). It is the inverse of the complex logarithm.

Complex number z = x + iy (exponent)
+
i
Calculation Result
\(e^z\) =

Exp Properties

Euler's Formula
\[e^{iy} = \cos(y) + i\sin(y)\]

One of the most beautiful formulas in mathematics!

Complete Formula
\[e^{x+iy} = e^x(\cos y + i\sin y)\]
Magnitude \(|e^z| = e^x\)
Argument \(\arg(e^z) = y\)
Important Properties
  • \(e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}\) (Functional equation)
  • \(e^z \neq 0\) for all \(z \in \mathbb{C}\)
  • \(e^{z + 2\pi i} = e^z\) (Periodicity)
  • Inverse: \(\ln(e^z) = z + 2\pi i k\)
Special Cases
  • \(e^0 = 1\)
  • \(e^{i\pi} = -1\) (Euler's identity)
  • \(e^{i\pi/2} = i\)
  • \(e^{2\pi i} = 1\)


Formula for the Exponential Function of Complex Numbers

The exponential function for complex numbers extends the real exponential function by using Euler's formula.

Definition

For \(z = x + iy\):
\[e^z = e^{x+iy} = e^x \cdot e^{iy}\] \[= e^x(\cos y + i\sin y)\]

Components

Real part: \(\text{Re}(e^z) = e^x \cos y\)
Imaginary part: \(\text{Im}(e^z) = e^x \sin y\)

Calculation Example

Calculation: \(e^{3+5i}\)
Step 1: Components

Given: \(z = 3 + 5i\)

Real part: \(x = 3\)

Imaginary part: \(y = 5\)

Step 2: Euler's formula

\(e^{3+5i} = e^3 \cdot e^{5i}\)

\(= e^3(\cos 5 + i\sin 5)\)

Step 3: Exponential

\(e^3 \approx 20.086\)

Scale factor for real and imaginary parts

Step 4: Trigonometric values

\(\cos(5) \approx 0.284\)

\(\sin(5) \approx -0.959\)

(Angles in radians!)

Step 5: Final result

Real part: \(20.086 \cdot 0.284 \approx 5.70\)

Imaginary part: \(20.086 \cdot (-0.959) \approx -19.26\)

\(e^{3+5i} \approx 5.70 - 19.26i\)

Geometric Interpretation

Magnitude: \(|e^{3+5i}| = e^3 \approx 20.086\)
The magnitude depends only on the real part!

Argument: \(\arg(e^{3+5i}) = 5\) rad
The argument is the imaginary part!

Important Properties and Theorems

Functional equation
\[e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}\]

The exponential function turns addition into multiplication.

Periodicity
\[e^{z + 2\pi i k} = e^z\]

The complex exponential function is periodic with period \(2\pi i\).

No zeros
\[e^z \neq 0 \quad \forall z \in \mathbb{C}\]

The exponential function has no zeros in the complex plane.

Euler's identity
\[e^{i\pi} + 1 = 0\]

The most famous formula in mathematics connects the five most important constants: \(e\), \(i\), \(\pi\), 1 and 0.

Polar form relation
\[z = r e^{i\phi} = r(\cos\phi + i\sin\phi)\]

Any complex number can be represented in polar form with the exponential function: \(r = |z|\), \(\phi = \arg(z)\).

Derivative
\[\frac{d}{dz}e^z = e^z\]

The exponential function is its own derivative - also in the complex domain!

Exponential Function - Detailed Description

Leonhard Euler

The Euler's formula was discovered by the Swiss mathematician Leonhard Euler (1707-1783) and is considered one of the most beautiful formulas in mathematics.

Derivation via series expansion:
\[e^{ix} = \sum_{n=0}^{\infty}\frac{(ix)^n}{n!}\] \[= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + \ldots\] \[= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots\right)\] \[= \cos(x) + i\sin(x)\]

Practical Applications

  • Electrical engineering: alternating current calculations, impedance
  • Signal processing: Fourier transform
  • Quantum mechanics: wave functions
  • Vibration theory: complex amplitude

Geometric Meaning

Multiplication by \(e^{i\phi}\) corresponds to a rotation by angle \(\phi\) in the complex plane.

Rotation of a complex number:
\[z' = z \cdot e^{i\phi}\] This rotates the number \(z\) by angle \(\phi\) counterclockwise about the origin.

Relation to the Logarithm

The exponential function is the inverse function of the complex logarithm:

\[w = e^z \quad \Leftrightarrow \quad z = \ln(w)\]

Note: The complex logarithm is multivalued!
\(\ln(e^z) = z + 2\pi i k\) with \(k \in \mathbb{Z}\)

Important Notes

Be careful with angles!
  • Angle \(y\) in Euler's formula must always be in radians
  • Conversion: \(1° = \frac{\pi}{180}\) rad
  • Observe periodicity: \(e^{iy}\) has period \(2\pi\)
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye