Multiplication of Complex Numbers

Online calculator for multiplying complex numbers with step-by-step explanation

Multiplication Calculator

Multiplication of Complex Numbers

The multiplication of complex numbers is done by expanding the parentheses and using \(i^2 = -1\).

Multiplier z₁ = a + bi
+
i
Multiplicand z₂ = c + di
+
i
Calculation Result
Product z₁·z₂ =

Multiplication - Properties

FOIL Method

First, Outer, Inner, Last
Systematic expansion of the parentheses

Formula
\[(a+bi)(c+di) = (ac-bd) + (ad+bc)i\]
Real part ac - bd
Imaginary part ad + bc
Important: \(i^2 = -1\)

When expanding you will encounter \(i^2\), which should be replaced by \(-1\).

Algebraic Rules
  • Commutative: \(z_1 \cdot z_2 = z_2 \cdot z_1\)
  • Associative: \((z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)\)
  • Distributive: \(z_1(z_2 + z_3) = z_1z_2 + z_1z_3\)
  • Magnitude: \(|z_1 \cdot z_2| = |z_1| \cdot |z_2|\)
In Polar Form

Easier: multiply magnitudes, add angles
\(r_1e^{i\phi_1} \cdot r_2e^{i\phi_2} = r_1r_2 \cdot e^{i(\phi_1+\phi_2)}\)

Formulas for Multiplication of Complex Numbers

The multiplication of two complex numbers is done by expanding according to the principle of permanence - the algebraic rules for real numbers remain valid.

Expansion
\[(a+bi)(c+di) = ac + adi + bci + bdi^2\]

Multiply each term of the first parenthesis with each of the second

Simplification
\[= (ac - bd) + (ad + bc)i\]

Using \(i^2 = -1\) and separating real and imaginary parts

Step-by-Step Example

Calculation: \((3+i) \cdot (1-2i)\)
Step 1: Expand

\((3+i)(1-2i)\)

\(= 3 \cdot 1 + 3 \cdot (-2i) + i \cdot 1 + i \cdot (-2i)\)

\(= 3 - 6i + i - 2i^2\)

Step 2: Replace \(i^2\)

Since \(i^2 = -1\):

\(3 - 6i + i - 2i^2\)

\(= 3 - 6i + i - 2(-1)\)

Step 3: Simplify

\(3 - 6i + i + 2\)

Real part: \(3 + 2 = 5\)

Imaginary part: \(-6i + i = -5i\)

Step 4: Result

\((3+i)(1-2i) = 5 - 5i\)

Verification with formula

Real part: \(ac - bd\)
\(= 3 \cdot 1 - 1 \cdot (-2) = 3 + 2 = 5\) ✓

Imaginary part: \(ad + bc\)
\(= 3 \cdot (-2) + 1 \cdot 1 = -6 + 1 = -5\) ✓

FOIL Method in Detail

What is FOIL?

FOIL is a mnemonic for expanding two binomials:
First: multiply first terms
Outer: multiply outer terms
Inner: multiply inner terms
Last: multiply last terms

Example: (3+i)(1-2i)

F: \(3 \cdot 1 = 3\)

O: \(3 \cdot (-2i) = -6i\)

I: \(i \cdot 1 = i\)

L: \(i \cdot (-2i) = -2i^2 = 2\)

Sum: \(3 - 6i + i + 2 = 5 - 5i\)

Visualization
   (3 + i) · (1 - 2i)
    ↓   ↓     ↓    ↓
    F   O     I    L
    
F: 3·1 = 3
O: 3·(-2i) = -6i
I: i·1 = i
L: i·(-2i) = -2i² = 2
                                            
Alternative: Distributive Law

\((a+bi)(c+di)\)
\(= a(c+di) + bi(c+di)\)
\(= ac + adi + bci + bdi^2\)
\(= (ac-bd) + (ad+bc)i\)

Multiplication of Complex Numbers - Detailed Description

Principle of Permanence

According to the principle of permanence the arithmetic rules for real numbers should also apply to complex numbers. Therefore we multiply complex numbers like binomials.

Procedure:
1. Expand the parentheses (as with real numbers)
2. Replace \(i^2\) by \(-1\)
3. Combine real and imaginary parts
4. Write the result in standard form \(a + bi\)

Important: \(i^2 = -1\)

The imaginary unit \(i\) is defined by the property \(i^2 = -1\). This is the key to multiplying complex numbers.

Common mistake!

Wrong: \(i^2 = 1\) or forgetting \(i^2\)
Right: Use \(i^2 = -1\) consistently

Practical Applications

Multiplication of complex numbers is used in many technical fields:

Applications:
Electrical engineering: impedance calculations
Signal processing: filter design
Quantum mechanics: wave functions
Control engineering: transfer functions

Polar Form (easier!)

In polar form multiplication is much simpler:

\[r_1e^{i\phi_1} \cdot r_2e^{i\phi_2} = r_1r_2 \cdot e^{i(\phi_1+\phi_2)}\]

Rule: multiply magnitudes, add angles

Special cases

  • Multiply by i: \(z \cdot i = (a+bi)i = -b+ai\) (90° rotation)
  • Square: \(z^2 = (a+bi)^2 = a^2-b^2+2abi\)
  • With conjugate: \(z \cdot \overline{z} = |z|^2\) (real!)
  • Multiply by 1: \(z \cdot 1 = z\) (identity element)

More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye