Natural Logarithm of Complex Numbers

Calculation of \(\ln(z)\) - the inverse of the complex exponential function

Logarithm Calculator

Natural Logarithm \(\ln(z)\)

The natural logarithm (base \(e\)) of a complex number is the inverse of the exponential function. The logarithm is multivalued and here the principal value is returned.

Complex number z = a + bi
+
i
Calculation Result
\(\ln(z)\) =
The imaginary part (argument) is given in radians

Logarithm - Properties

Principal Value
\[\ln(z) = \ln|z| + i\arg(z)\]

With \(-\pi < \arg(z) \leq \pi\)

Components
Real part: \(\text{Re}(\ln z) = \ln|z| = \frac{1}{2}\ln(a^2+b^2)\)
Imaginary part: \(\text{Im}(\ln z) = \arg(z) = \arctan\left(\frac{b}{a}\right)\)
Base \(e \approx 2.718\)
Multivalued + 2πik
Multivaluedness

In general: \(\ln(z) = \ln|z| + i(\arg(z) + 2\pi k)\) with \(k \in \mathbb{Z}\)
Infinitely many values!
This calculator returns the principal value (k=0)

Important Properties
  • \(\ln(z_1 \cdot z_2) = \ln(z_1) + \ln(z_2)\) (modulo \(2\pi i\))
  • \(\ln(z_1 / z_2) = \ln(z_1) - \ln(z_2)\) (modulo \(2\pi i\))
  • \(\ln(z^n) = n\ln(z)\) (modulo \(2\pi i\))
  • \(e^{\ln(z)} = z\) (unique)
Inverse Function

\(\ln(z)\) is the inverse of \(e^z\):
If \(w = e^z\), then \(z = \ln(w)\)


Formulas for the Natural Logarithm

The natural logarithm of a complex number \(z = a + bi\) is computed by:

Standard formula
\[\ln(z) = \ln|z| + i\arg(z)\]

With \(|z| = \sqrt{a^2+b^2}\) and \(\arg(z) = \arctan(b/a)\)

Component form
\[\ln(z) = \frac{1}{2}\ln(a^2+b^2) + i\arctan\left(\frac{b}{a}\right)\]

Direct computation from real and imaginary parts

Calculation Example

Calculation: \(\ln(3 + 5i)\)
Step 1: Given

\(z = 3 + 5i\)

Real part: \(a = 3\)

Imaginary part: \(b = 5\)

Step 2: Real part

\(\text{Re}(\ln z) = \frac{1}{2}\ln(a^2+b^2)\)

\(= \frac{1}{2}\ln(3^2 + 5^2)\)

\(= \frac{1}{2}\ln(9 + 25)\)

\(= \frac{1}{2}\ln(34)\)

\(\approx 1.763\)

Step 3: Imaginary part

\(\text{Im}(\ln z) = \arctan\left(\frac{b}{a}\right)\)

\(= \arctan\left(\frac{5}{3}\right)\)

\(\approx 1.030\) rad

(≈ 59.04°)

Step 4: Result

\[\ln(3 + 5i) = 1.763 + 1.030i\]

The imaginary part is given in radians

Verification

Check with exponential:
\(e^{1.763+1.030i} = e^{1.763} \cdot e^{1.030i}\)
\(= 5.831 \cdot (\cos 1.030 + i\sin 1.030)\)
\(= 5.831 \cdot (0.515 + 0.857i)\)
\(\approx 3.0 + 5.0i\) ✓

Alternative computation:
\(|z| = \sqrt{3^2+5^2} = \sqrt{34} \approx 5.831\)
\(\ln|z| = \ln(5.831) \approx 1.763\) ✓
\(\arg(z) = \arctan(5/3) \approx 1.030\) ✓

Multivalued Nature of the Complex Logarithm

Problem: Infinitely many values

The complex logarithm is not unique!

\[\ln(z) = \ln|z| + i(\arg(z) + 2\pi k)\]

with \(k \in \mathbb{Z}\) (any integer)
Reason: The exponential function is periodic: \(e^{z+2\pi i} = e^z\)

Example: \(\ln(1)\)

Possible values:

  • \(k=0\): \(\ln(1) = 0\) (principal value)
  • \(k=1\): \(\ln(1) = 2\pi i\)
  • \(k=-1\): \(\ln(1) = -2\pi i\)
  • \(k=2\): \(\ln(1) = 4\pi i\)
  • etc. (infinitely many!)
Solution: Principal Value

To obtain uniqueness, define the principal value:

\[\text{Log}(z) = \ln|z| + i\arg(z)\]

with \(-\pi < \arg(z) \leq \pi\) (principal branch)
This corresponds to k=0 in the general formula

Branch Cut

The principal value has a branch cut along the negative real axis. When crossing it the imaginary part jumps by \(2\pi\).

Note: For negative real numbers the imaginary part is \(\pm\pi\) (depending on convention)

Graphical representation of multivaluedness
\(z = 1\)
Principal: \(0\)
Others: \(2\pi k i\)
\(z = -1\)
Principal: \(\pi i\)
Others: \(\pi i + 2\pi k i\)
\(z = i\)
Principal: \(\frac{\pi}{2}i\)
Others: \(\frac{\pi}{2}i + 2\pi k i\)

Natural Logarithm - Detailed Description

Inverse of the Exponential Function

The natural logarithm \(\ln(z)\) is the inverse of the complex exponential function \(e^z\).

Inverse relationship:
• If \(w = e^z\), then \(z = \ln(w)\)
• It holds: \(e^{\ln(z)} = z\) (unique)
• But: \(\ln(e^z) = z + 2\pi ik\) (multivalued!)
• Principal value: \(\ln(e^z) = z\) for \(\text{Im}(z) \in (-\pi, \pi]\)

Computation using Polar Form

If \(z = r e^{i\phi}\) in polar form, then:

\[\ln(r e^{i\phi}) = \ln(r) + i\phi\]

With \(r = |z|\) and \(\phi = \arg(z)\)

Practical Applications

The complex logarithm finds applications in many areas:

Applications:
Complex analysis: conformal mappings
Electrical engineering: Bode diagrams, filter design
Signal processing: spectral analysis
Physics: quantum mechanics, fluid dynamics

Computation rules

Be careful with computation rules!

The familiar logarithm rules only hold modulo \(2\pi i\):
• \(\ln(z_1 \cdot z_2) = \ln(z_1) + \ln(z_2) + 2\pi ik\)
• \(\ln(z^n) = n\ln(z) + 2\pi ik\)
• The principal value satisfies the rules only approximately!

Special cases

  • Positive real numbers: \(\ln(a) = \ln(a) + 0i\) (as real)
  • Negative real numbers: \(\ln(-a) = \ln(a) + \pi i\)
  • Imaginary unit: \(\ln(i) = \frac{\pi}{2}i\)
  • One: \(\ln(1) = 0\) (principal value)
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye