Sine (sin) for Complex Numbers
Calculation of sin(z) - trigonometric function in the complex plane
Sine Calculator
Sine of Complex Numbers
The sine sin(z) of a complex number z = x + yi is calculated using real and hyperbolic functions. It is a periodic function with period 2π and can take arbitrarily large values (not bounded to [-1, 1]).
Sine - Properties
Formula for Complex Numbers
With z = x + yi
Euler's Formula
Important Properties
- Periodic with period 2π
- Odd function: sin(-z) = -sin(z)
- \(\sin^2(z) + \cos^2(z) = 1\) (Pythagorean identity)
- Not bounded for complex z
Relations
- \(\sin(z) = \cos(z - \pi/2)\)
- \(\sin(2z) = 2\sin(z)\cos(z)\)
- \(\sin(z \pm w) = \sin z \cos w \pm \cos z \sin w\)
- \(\sinh(iz) = i\sin(z)\)
Formulas for Sine of Complex Numbers
The sine sin(z) of a complex number z = x + yi is calculated using a combination of trigonometric and hyperbolic functions.
Cartesian Form
Real part: \(\sin(x)\cosh(y)\)
Imaginary part: \(\cos(x)\sinh(y)\)
Euler's Formula
Exponential representation
Step-by-Step Example
Calculation: sin(3 + 5i)
Step 1: Apply formula
z = 3 + 5i
x = 3 (real part)
y = 5 (imaginary part)
Step 2: Calculate real part
\(\text{Re} = \sin(3) \cdot \cosh(5)\)
\(= (0.14112) \cdot (74.20995)\)
\(\approx 10.473\)
Step 3: Calculate imaginary part
\(\text{Im} = \cos(3) \cdot \sinh(5)\)
\(= (-0.98999) \cdot (74.20321)\)
\(\approx -73.461\)
Step 4: Result
\(\sin(3 + 5i) = \text{Re} + i\text{Im}\)
\(\approx 10.473 - 73.461i\)
Observation
The magnitude \(|\sin(3 + 5i)| \approx 74.20\) is much greater than 1! This is typical for complex arguments with large imaginary parts, as cosh(y) and sinh(y) grow exponentially.
More Examples
Example 1: sin(0)
z = 0
\(\sin(0) = \sin(0)\cosh(0)\)
\(= 0 \cdot 1 = 0\)
Example 2: sin(π/2)
z = π/2 ≈ 1.5708
\(\sin(\pi/2) = \sin(\pi/2)\cosh(0)\)
\(= 1 \cdot 1 = 1\)
Example 3: sin(i)
z = i (purely imaginary)
\(\sin(i) = i\sinh(1)\)
\(\approx 1.175i\)
Example 4: sin(π)
z = π ≈ 3.1416
\(\sin(\pi) = \sin(\pi)\cosh(0)\)
\(\approx 0\)
Example 5: sin(1 + i)
z = 1 + i
\(\text{Re} = \sin(1)\cosh(1) \approx 1.298\)
\(\text{Im} = \cos(1)\sinh(1) \approx 0.635\)
\(\approx 1.298 + 0.635i\)
Example 6: sin(2i)
z = 2i (purely imaginary)
\(\sin(2i) = i\sinh(2)\)
\(\approx 3.627i\)
Sine - Detailed Description
Definition
The sine is one of the fundamental trigonometric functions.
In a right triangle:
\[\sin(\alpha) = \frac{\text{Opposite}}{\text{Hypotenuse}}\]
Range: [-1, 1]
Period: 2π
For Complex Numbers
Calculation with z = x + yi:
• Real part: \(\sin(x)\cosh(y)\)
• Imaginary part: \(\cos(x)\sinh(y)\)
• Not bounded! Can become arbitrarily large
Important Properties
- Periodicity: \(\sin(z + 2\pi) = \sin(z)\)
- Odd function: \(\sin(-z) = -\sin(z)\)
- Pythagorean identity: \(\sin^2(z) + \cos^2(z) = 1\)
- Derivative: \(\frac{d}{dz}\sin(z) = \cos(z)\)
Addition Formulas
\[\sin(z \pm w) = \sin z \cos w \pm \cos z \sin w\]
Double angle:
\[\sin(2z) = 2\sin(z)\cos(z)\]
Relations to Other Functions
• \(\sin(z) = \cos(z - \pi/2)\) (phase shift)
• \(\sinh(iz) = i\sin(z)\) (hyperbolic ↔ trigonometric)
• \(\sin(iz) = i\sinh(z)\) (inverse)
• \(e^{iz} = \cos(z) + i\sin(z)\) (Euler's formula)
Applications
Physics
- Oscillations and waves
- Alternating current
- Harmonic oscillators
- Acoustics
Geometry
- Angle calculation
- Circle functions
- Projections
- Rotations
Signal Processing
- Fourier transformation
- Frequency analysis
- Waveforms
- Filtering
Important Difference: Real vs. Complex
- Bounded: -1 ≤ sin(x) ≤ 1
- Periodic with period 2π
- Odd function
- Not bounded! |sin(z)| can become arbitrarily large
- Periodic with period 2π
- Odd function
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •