Sine (sin) for Complex Numbers

Calculation of sin(z) - trigonometric function in the complex plane

Sine Calculator

Sine of Complex Numbers

The sine sin(z) of a complex number z = x + yi is calculated using real and hyperbolic functions. It is a periodic function with period 2π and can take arbitrarily large values (not bounded to [-1, 1]).

Angle z = x + yi (radians)
+
i
Calculation Result
sin(z) =
For purely real numbers: |sin(x)| ≤ 1, for complex numbers |sin(z)| can be > 1!

Sine - Properties

Formula for Complex Numbers
\[\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)\]

With z = x + yi

Euler's Formula
\[\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}\]
Period
Odd function sin(-z) = -sin(z)
Important Properties
  • Periodic with period 2π
  • Odd function: sin(-z) = -sin(z)
  • \(\sin^2(z) + \cos^2(z) = 1\) (Pythagorean identity)
  • Not bounded for complex z
Relations
  • \(\sin(z) = \cos(z - \pi/2)\)
  • \(\sin(2z) = 2\sin(z)\cos(z)\)
  • \(\sin(z \pm w) = \sin z \cos w \pm \cos z \sin w\)
  • \(\sinh(iz) = i\sin(z)\)


Formulas for Sine of Complex Numbers

The sine sin(z) of a complex number z = x + yi is calculated using a combination of trigonometric and hyperbolic functions.

Cartesian Form
\[\sin(x + yi) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)\]

Real part: \(\sin(x)\cosh(y)\)
Imaginary part: \(\cos(x)\sinh(y)\)

Euler's Formula
\[\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}\]

Exponential representation

Step-by-Step Example

Calculation: sin(3 + 5i)
Step 1: Apply formula

z = 3 + 5i

x = 3 (real part)

y = 5 (imaginary part)

Step 2: Calculate real part

\(\text{Re} = \sin(3) \cdot \cosh(5)\)

\(= (0.14112) \cdot (74.20995)\)

\(\approx 10.473\)

Step 3: Calculate imaginary part

\(\text{Im} = \cos(3) \cdot \sinh(5)\)

\(= (-0.98999) \cdot (74.20321)\)

\(\approx -73.461\)

Step 4: Result

\(\sin(3 + 5i) = \text{Re} + i\text{Im}\)

\(\approx 10.473 - 73.461i\)

Observation

The magnitude \(|\sin(3 + 5i)| \approx 74.20\) is much greater than 1! This is typical for complex arguments with large imaginary parts, as cosh(y) and sinh(y) grow exponentially.

More Examples

Example 1: sin(0)

z = 0

\(\sin(0) = \sin(0)\cosh(0)\)

\(= 0 \cdot 1 = 0\)

Example 2: sin(π/2)

z = π/2 ≈ 1.5708

\(\sin(\pi/2) = \sin(\pi/2)\cosh(0)\)

\(= 1 \cdot 1 = 1\)

Example 3: sin(i)

z = i (purely imaginary)

\(\sin(i) = i\sinh(1)\)

\(\approx 1.175i\)

Example 4: sin(π)

z = π ≈ 3.1416

\(\sin(\pi) = \sin(\pi)\cosh(0)\)

\(\approx 0\)

Example 5: sin(1 + i)

z = 1 + i

\(\text{Re} = \sin(1)\cosh(1) \approx 1.298\)
\(\text{Im} = \cos(1)\sinh(1) \approx 0.635\)

\(\approx 1.298 + 0.635i\)

Example 6: sin(2i)

z = 2i (purely imaginary)

\(\sin(2i) = i\sinh(2)\)

\(\approx 3.627i\)

Sine - Detailed Description

Definition

The sine is one of the fundamental trigonometric functions.

For real numbers:
In a right triangle:
\[\sin(\alpha) = \frac{\text{Opposite}}{\text{Hypotenuse}}\]

Range: [-1, 1]
Period:

For Complex Numbers

Calculation with z = x + yi:

\[\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)\]

• Real part: \(\sin(x)\cosh(y)\)
• Imaginary part: \(\cos(x)\sinh(y)\)
Not bounded! Can become arbitrarily large

Important Properties

  • Periodicity: \(\sin(z + 2\pi) = \sin(z)\)
  • Odd function: \(\sin(-z) = -\sin(z)\)
  • Pythagorean identity: \(\sin^2(z) + \cos^2(z) = 1\)
  • Derivative: \(\frac{d}{dz}\sin(z) = \cos(z)\)

Addition Formulas

Sum formula:
\[\sin(z \pm w) = \sin z \cos w \pm \cos z \sin w\]
Double angle:
\[\sin(2z) = 2\sin(z)\cos(z)\]

Relations to Other Functions

• \(\sin(z) = \cos(z - \pi/2)\) (phase shift)
• \(\sinh(iz) = i\sin(z)\) (hyperbolic ↔ trigonometric)
• \(\sin(iz) = i\sinh(z)\) (inverse)
• \(e^{iz} = \cos(z) + i\sin(z)\) (Euler's formula)

Applications

Physics
  • Oscillations and waves
  • Alternating current
  • Harmonic oscillators
  • Acoustics
Geometry
  • Angle calculation
  • Circle functions
  • Projections
  • Rotations
Signal Processing
  • Fourier transformation
  • Frequency analysis
  • Waveforms
  • Filtering
Important Difference: Real vs. Complex
Real arguments (x ∈ ℝ):
  • Bounded: -1 ≤ sin(x) ≤ 1
  • Periodic with period 2π
  • Odd function
Complex arguments (z ∈ ℂ):
  • Not bounded! |sin(z)| can become arbitrarily large
  • Periodic with period 2π
  • Odd function
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye