Decadic (base-10) Logarithm of Complex Numbers

Calculation of \(\log_{10}(z)\) - logarithm to base 10

Log₁₀ Calculator

Decadic Logarithm \(\log_{10}(z)\)

The decadic logarithm (base 10) of a complex number is computed by converting the natural logarithm: \(\log_{10}(z) = \frac{\ln(z)}{\ln(10)}\)

Complex number z = a + bi
+
i
Calculation Result
\(\log_{10}(z)\) =
Conversion: \(\log_{10}(z) = \frac{\ln(z)}{\ln(10)} = \frac{\ln(z)}{2.302585}\)

Log₁₀ - Properties

Base Conversion
\[\log_{10}(z) = \frac{\ln(z)}{\ln(10)}\]

Conversion from natural to decadic logarithm

Formula
\[\log_{10}(z) = \frac{\log_{10}|z| + i\arg(z)}{\ln(10)}\]
Base 10
ln(10) ≈ 2.303
Important Properties
  • \(\log_{10}(z_1 \cdot z_2) = \log_{10}(z_1) + \log_{10}(z_2)\)
  • \(\log_{10}(z_1 / z_2) = \log_{10}(z_1) - \log_{10}(z_2)\)
  • \(\log_{10}(z^n) = n\log_{10}(z)\)
  • \(10^{\log_{10}(z)} = z\)
Special Values
  • \(\log_{10}(10) = 1\)
  • \(\log_{10}(100) = 2\)
  • \(\log_{10}(1000) = 3\)
  • \(\log_{10}(1) = 0\)
  • \(\log_{10}(0.1) = -1\)
Conversion

From ln to log₁₀: \(\log_{10}(z) = \frac{\ln(z)}{2.302585}\)
From log₁₀ to ln: \(\ln(z) = 2.302585 \cdot \log_{10}(z)\)

Formulas for the Decadic Logarithm

The decadic logarithm (base 10) of a complex number \(z = a + bi\) is computed by converting the natural logarithm.

Base conversion
\[\log_{10}(z) = \frac{\ln(z)}{\ln(10)}\]

With \(\ln(10) \approx 2.302585\)

Detailed form
\[\log_{10}(z) = \frac{\ln|z| + i\arg(z)}{\ln(10)}\]

With real and imaginary parts separated

Calculation Example

Calculation: \(\log_{10}(100 + 0i)\) and \(\log_{10}(3 + 4i)\)
Example 1: Real number \(\log_{10}(100)\)

Given: \(z = 100 + 0i\)

Computation:

\(\log_{10}(100) = \frac{\ln(100)}{\ln(10)}\)

\(= \frac{4.605}{2.303} = 2\)

Result: \(2 + 0i\)

As in the real case: \(10^2 = 100\) ✓

More examples

\(\log_{10}(10) = 1\)

\(\log_{10}(1000) = 3\)

\(\log_{10}(1) = 0\)

\(\log_{10}(0.1) = -1\)

Example 2: Complex number \(\log_{10}(3+4i)\)

Step 1: Natural logarithm

\(|z| = \sqrt{3^2+4^2} = 5\)

\(\arg(z) = \arctan(4/3) \approx 0.927\) rad

\(\ln(z) = \ln(5) + 0.927i \approx 1.609 + 0.927i\)

Step 2: Convert to base 10

\(\log_{10}(z) = \frac{1.609 + 0.927i}{2.303}\)

Result: \(0.699 + 0.403i\)

Verification

Check: \(10^{0.699+0.403i}\)
\(= 10^{0.699} \cdot 10^{0.403i}\)
\(= 5.0 \cdot (\cos(0.927) + i\sin(0.927))\)
\(\approx 3.0 + 4.0i\) ✓

Component-wise computation
Real part:
\[\text{Re}(\log_{10}(z)) = \frac{\ln|z|}{\ln(10)} = \frac{\frac{1}{2}\ln(a^2+b^2)}{\ln(10)}\]
Imaginary part:
\[\text{Im}(\log_{10}(z)) = \frac{\arg(z)}{\ln(10)} = \frac{\arctan(b/a)}{\ln(10)}\]

Comparison: log₁₀ vs. ln vs. log₂

Natural logarithm (ln)

Base: \(e \approx 2.718\)

Formula: \(\ln(z)\)

Use: Analysis, mathematics

Example: \(\ln(e) = 1\)

Decadic logarithm (log₁₀)

Base: \(10\)

Formula: \(\log_{10}(z) = \frac{\ln(z)}{\ln(10)}\)

Use: Physics, engineering, pH-scale

Example: \(\log_{10}(100) = 2\)

Binary logarithm (log₂)

Base: \(2\)

Formula: \(\log_2(z) = \frac{\ln(z)}{\ln(2)}\)

Use: Computer science, bits

Example: \(\log_2(8) = 3\)

Conversion factors

\(\ln(10) \approx 2.303\)

Factor for ln → log₁₀

\(\ln(2) \approx 0.693\)

Factor for ln → log₂

\(\frac{\ln(10)}{\ln(2)} \approx 3.322\)

Factor for log₂ → log₁₀

Applications of the Decadic Logarithm

Natural Sciences

  • pH value: \(\text{pH} = -\log_{10}[\text{H}^+]\)
  • Decibel (dB): \(L = 20\log_{10}\left(\frac{p}{p_0}\right)\)
  • Richter scale: earthquake magnitude
  • Stellar brightness: magnitude

Engineering

  • Bode plot: gain in dB
  • Signal processing: dynamic range
  • Acoustics: sound pressure level
  • Electrical engineering: attenuation and gain

Practical Examples

Example: pH value

If \([\text{H}^+] = 10^{-7}\) mol/L
\(\text{pH} = -\log_{10}(10^{-7}) = 7\) (neutral)

Example: Decibels

Gain by factor 100:
\(20\log_{10}(100) = 20 \cdot 2 = 40\) dB

Example: Richter scale

Magnitude 5 is 10 times stronger than magnitude 4:
\(\log_{10}(10) = 1\) unit difference

Important note

Notation: In many calculators and programming languages "\(\log\)" denotes \(\log_{10}\) while "\(\ln\)" denotes the natural logarithm. In mathematics, "\(\log\)" often refers to the natural logarithm!


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye