Decadic (base-10) Logarithm of Complex Numbers
Calculation of \(\log_{10}(z)\) - logarithm to base 10
Log₁₀ Calculator
Decadic Logarithm \(\log_{10}(z)\)
The decadic logarithm (base 10) of a complex number is computed by converting the natural logarithm: \(\log_{10}(z) = \frac{\ln(z)}{\ln(10)}\)
Log₁₀ - Properties
Base Conversion
Conversion from natural to decadic logarithm
Formula
Important Properties
- \(\log_{10}(z_1 \cdot z_2) = \log_{10}(z_1) + \log_{10}(z_2)\)
- \(\log_{10}(z_1 / z_2) = \log_{10}(z_1) - \log_{10}(z_2)\)
- \(\log_{10}(z^n) = n\log_{10}(z)\)
- \(10^{\log_{10}(z)} = z\)
Special Values
- \(\log_{10}(10) = 1\)
- \(\log_{10}(100) = 2\)
- \(\log_{10}(1000) = 3\)
- \(\log_{10}(1) = 0\)
- \(\log_{10}(0.1) = -1\)
Conversion
From ln to log₁₀: \(\log_{10}(z) = \frac{\ln(z)}{2.302585}\)
From log₁₀ to ln: \(\ln(z) = 2.302585 \cdot \log_{10}(z)\)
Formulas for the Decadic Logarithm
The decadic logarithm (base 10) of a complex number \(z = a + bi\) is computed by converting the natural logarithm.
Base conversion
With \(\ln(10) \approx 2.302585\)
Detailed form
With real and imaginary parts separated
Calculation Example
Calculation: \(\log_{10}(100 + 0i)\) and \(\log_{10}(3 + 4i)\)
Example 1: Real number \(\log_{10}(100)\)
Given: \(z = 100 + 0i\)
Computation:
\(\log_{10}(100) = \frac{\ln(100)}{\ln(10)}\)
\(= \frac{4.605}{2.303} = 2\)
Result: \(2 + 0i\)
As in the real case: \(10^2 = 100\) ✓
More examples
\(\log_{10}(10) = 1\)
\(\log_{10}(1000) = 3\)
\(\log_{10}(1) = 0\)
\(\log_{10}(0.1) = -1\)
Example 2: Complex number \(\log_{10}(3+4i)\)
Step 1: Natural logarithm
\(|z| = \sqrt{3^2+4^2} = 5\)
\(\arg(z) = \arctan(4/3) \approx 0.927\) rad
\(\ln(z) = \ln(5) + 0.927i \approx 1.609 + 0.927i\)
Step 2: Convert to base 10
\(\log_{10}(z) = \frac{1.609 + 0.927i}{2.303}\)
Result: \(0.699 + 0.403i\)
Verification
Check: \(10^{0.699+0.403i}\)
\(= 10^{0.699} \cdot 10^{0.403i}\)
\(= 5.0 \cdot (\cos(0.927) + i\sin(0.927))\)
\(\approx 3.0 + 4.0i\) ✓
Component-wise computation
\[\text{Re}(\log_{10}(z)) = \frac{\ln|z|}{\ln(10)} = \frac{\frac{1}{2}\ln(a^2+b^2)}{\ln(10)}\]
\[\text{Im}(\log_{10}(z)) = \frac{\arg(z)}{\ln(10)} = \frac{\arctan(b/a)}{\ln(10)}\]
Comparison: log₁₀ vs. ln vs. log₂
Natural logarithm (ln)
Base: \(e \approx 2.718\)
Formula: \(\ln(z)\)
Use: Analysis, mathematics
Example: \(\ln(e) = 1\)
Decadic logarithm (log₁₀)
Base: \(10\)
Formula: \(\log_{10}(z) = \frac{\ln(z)}{\ln(10)}\)
Use: Physics, engineering, pH-scale
Example: \(\log_{10}(100) = 2\)
Binary logarithm (log₂)
Base: \(2\)
Formula: \(\log_2(z) = \frac{\ln(z)}{\ln(2)}\)
Use: Computer science, bits
Example: \(\log_2(8) = 3\)
Conversion factors
\(\ln(10) \approx 2.303\)
Factor for ln → log₁₀\(\ln(2) \approx 0.693\)
Factor for ln → log₂\(\frac{\ln(10)}{\ln(2)} \approx 3.322\)
Factor for log₂ → log₁₀Applications of the Decadic Logarithm
Natural Sciences
- pH value: \(\text{pH} = -\log_{10}[\text{H}^+]\)
- Decibel (dB): \(L = 20\log_{10}\left(\frac{p}{p_0}\right)\)
- Richter scale: earthquake magnitude
- Stellar brightness: magnitude
Engineering
- Bode plot: gain in dB
- Signal processing: dynamic range
- Acoustics: sound pressure level
- Electrical engineering: attenuation and gain
Practical Examples
Example: pH value
If \([\text{H}^+] = 10^{-7}\) mol/L
\(\text{pH} = -\log_{10}(10^{-7}) = 7\) (neutral)
Example: Decibels
Gain by factor 100:
\(20\log_{10}(100) = 20 \cdot 2 = 40\) dB
Example: Richter scale
Magnitude 5 is 10 times stronger than magnitude 4:
\(\log_{10}(10) = 1\) unit difference
Important note
Notation: In many calculators and programming languages "\(\log\)" denotes \(\log_{10}\) while "\(\ln\)" denotes the natural logarithm. In mathematics, "\(\log\)" often refers to the natural logarithm!
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •