Reciprocal (Inverse) of Complex Numbers

Calculation of \(\frac{1}{z}\) - the multiplicative inverse

Reciprocal Calculator

Reciprocal (Inverse)

The reciprocal \(\frac{1}{z}\) of a complex number is the multiplicative inverse: \(z \cdot \frac{1}{z} = 1\). It is calculated by multiplying with the conjugate number.

Complex number z = a + bi
+
i
Calculation Result
\(\frac{1}{z}\) =

Reciprocal - Properties

Formula
\[\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\]

Multiply by the conjugate number

Component form
\[\text{Re}\left(\frac{1}{z}\right) = \frac{a}{a^2+b^2}\] \[\text{Im}\left(\frac{1}{z}\right) = -\frac{b}{a^2+b^2}\]
Denominator \(|z|^2 = a^2+b^2\)
Numerator \(\overline{z} = a-bi\)
Important Properties
  • \(z \cdot \frac{1}{z} = 1\) (definition)
  • \(\frac{1}{z} = z^{-1}\) (power notation)
  • \(\frac{1}{\frac{1}{z}} = z\) (involution)
  • \(\left|\frac{1}{z}\right| = \frac{1}{|z|}\) (magnitude)
Not defined for z = 0

The reciprocal is only defined for \(z \neq 0\). Division by zero is not possible!

With Polar Form

For \(z = re^{i\phi}\):
\[\frac{1}{z} = \frac{1}{r}e^{-i\phi}\] Rule: invert magnitude, negate angle


Formula for Calculating the Reciprocal

The reciprocal (inverse) of a complex number \(z = a + bi\) is calculated by multiplying with the conjugate number.

Derivation
\[\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi}\] \[= \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2}\]

Multiplying by the conjugate makes the denominator real

Final Formula
\[\frac{1}{z} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\]

Divide real and imaginary parts by \(|z|^2 = a^2+b^2\)

Step-by-Step Example

Calculation: \(\frac{1}{3+5i}\)
Step 1: Multiply by conjugate

\(\frac{1}{3+5i} = \frac{1}{3+5i} \cdot \frac{3-5i}{3-5i}\)

Conjugate of \(3+5i\) is \(3-5i\)

Step 2: Numerator

Numerator: \(1 \cdot (3-5i) = 3-5i\)

Step 3: Denominator

\((3+5i)(3-5i) = 9 - 25i^2\)

\(= 9 - 25(-1) = 9 + 25 = 34\)

Step 4: Division

\(\frac{3-5i}{34} = \frac{3}{34} - \frac{5}{34}i\)

Step 5: Decimal value

\(\frac{3}{34} \approx 0.088\)

\(\frac{5}{34} \approx 0.147\)

\(\frac{1}{3+5i} \approx 0.088 - 0.147i\)

Verification

Check: \((3+5i)(0.088-0.147i)\)
\(= 0.264 - 0.441i + 0.440i - 0.735i^2\)
\(= 0.264 - 0.001i + 0.735\)
\(\approx 1.0\) ✓

Alternative calculation with formula
Real part:
\[\frac{a}{a^2+b^2} = \frac{3}{3^2+5^2} = \frac{3}{34} \approx 0.088\]
Imaginary part:
\[-\frac{b}{a^2+b^2} = -\frac{5}{34} \approx -0.147\]

More Examples

Example 1: \(\frac{1}{i}\)

\(\frac{1}{i} = \frac{1}{i} \cdot \frac{-i}{-i}\)

\(= \frac{-i}{-i^2} = \frac{-i}{1}\)

\(= -i\)

Example 2: \(\frac{1}{1+i}\)

\(\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)}\)

\(= \frac{1-i}{1-i^2} = \frac{1-i}{2}\)

\(= 0.5 - 0.5i\)

Example 3: \(\frac{1}{2}\) (real)

\(\frac{1}{2+0i} = \frac{2}{2^2+0^2}\)

\(= \frac{2}{4}\)

\(= 0.5 + 0i\)

Example 4: With polar form

For \(z = 2e^{i\pi/3}\) (magnitude 2, angle 60°):

\(\frac{1}{z} = \frac{1}{2}e^{-i\pi/3}\)

Magnitude: 0.5, Angle: -60°

Example 5: \(\frac{1}{3-4i}\)

\(|3-4i|^2 = 9 + 16 = 25\)

\(\frac{1}{3-4i} = \frac{3+4i}{25}\)

\(= 0.12 + 0.16i\)

Reciprocal of Complex Numbers - Detailed Description

Multiplicative Inverse

The reciprocal \(\frac{1}{z}\) is the multiplicative inverse of the complex number \(z\).

Definition:
\(z \cdot \frac{1}{z} = 1\) for all \(z \neq 0\)

Notation:
\(\frac{1}{z} = z^{-1}\) (power notation)

Calculation

The trick is to multiply by the conjugate number:

\[\frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2}\]

The denominator becomes real: \((a+bi)(a-bi) = a^2+b^2 = |z|^2\)

With Polar Form (easier!)

In polar form, the reciprocal is especially easy to calculate:

For \(z = re^{i\phi}\):
\[\frac{1}{z} = \frac{1}{r}e^{-i\phi}\] Rule:
• Magnitude: \(\frac{1}{r}\) (invert)
• Angle: \(-\phi\) (negate)

Practical Applications

Uses:
Division: \(\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2}\)
Electrical engineering: impedance calculations
Control engineering: feedback systems
Geometry: inversion at the unit circle

Important Properties

  • \(\left|\frac{1}{z}\right| = \frac{1}{|z|}\) (magnitude inverts)
  • \(\arg\left(\frac{1}{z}\right) = -\arg(z)\) (angle negates)
  • \(\overline{\frac{1}{z}} = \frac{1}{\overline{z}}\) (conjugation commutes)
  • \(\frac{1}{\frac{1}{z}} = z\) (involution)
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye