Tangent (tan) for Complex Numbers

Calculation of tan(z) - ratio of sine to cosine

Tangent Calculator

Tangent of Complex Numbers

The tangent tan(z) is the ratio of sine to cosine: \(\tan(z) = \frac{\sin(z)}{\cos(z)}\). For complex numbers it is a periodic function with period π and has poles at (2k+1)π/2.

Angle z = x + yi (radians)
+
i
Calculation Result
tan(z) =
Caution: tan(z) has poles at z = (2k+1)π/2, k ∈ ℤ!

Tangent - Properties

Formula for Complex Numbers
\[\tan(z) = \frac{\sin(2x)}{\cos(2x)+\cosh(2y)} + i\frac{\sinh(2y)}{\cos(2x)+\cosh(2y)}\]

With z = x + yi

Quotient Representation
\[\tan(z) = \frac{\sin(z)}{\cos(z)}\]
Period π
Odd function tan(-z) = -tan(z)
Important Properties
  • Periodic with period π
  • Odd function: tan(-z) = -tan(z)
  • Poles at z = (2k+1)π/2
  • \(1 + \tan^2(z) = \frac{1}{\cos^2(z)}\)
Relations
  • \(\tan(z) = \frac{1}{\cot(z)}\)
  • \(\tan(2z) = \frac{2\tan(z)}{1-\tan^2(z)}\)
  • \(\tan(z \pm w) = \frac{\tan z \pm \tan w}{1 \mp \tan z \tan w}\)
  • \(\tanh(iz) = i\tan(z)\)


Formulas for Tangent of Complex Numbers

The tangent tan(z) of a complex number z = x + yi is the ratio of sine to cosine and combines trigonometric with hyperbolic functions.

Cartesian Form
\[\tan(z) = \frac{\sin(2x)}{\cos(2x)+\cosh(2y)} + i\frac{\sinh(2y)}{\cos(2x)+\cosh(2y)}\]

Real part: \(\frac{\sin(2x)}{\cos(2x)+\cosh(2y)}\)
Imaginary part: \(\frac{\sinh(2y)}{\cos(2x)+\cosh(2y)}\)

Quotient Representation
\[\tan(z) = \frac{\sin(z)}{\cos(z)}\]

Ratio of sine to cosine

Step-by-Step Example

Calculation: tan(0.3 + 0.5i)
Step 1: Apply formula

z = 0.3 + 0.5i

x = 0.3, y = 0.5

2x = 0.6, 2y = 1.0

Step 2: Calculate denominator

\(\cos(0.6) + \cosh(1.0)\)

\(= 0.825 + 1.543\)

\(\approx 2.368\)

Step 3: Calculate real part

\(\text{Re} = \frac{\sin(0.6)}{2.368}\)

\(= \frac{0.565}{2.368}\)

\(\approx 0.238\)

Step 4: Calculate imaginary part

\(\text{Im} = \frac{\sinh(1.0)}{2.368}\)

\(= \frac{1.175}{2.368}\)

\(\approx 0.496\)

Step 5: Result

\(\tan(0.3 + 0.5i) = \text{Re} + i\text{Im}\)

\(\approx 0.238 + 0.496i\)

More Examples

Example 1: tan(0)

z = 0

\(\tan(0) = \frac{\sin(0)}{\cos(0)}\)

\(= \frac{0}{1} = 0\)

Example 2: tan(π/4)

z = π/4 ≈ 0.7854

\(\tan(\pi/4) = \frac{\sin(\pi/4)}{\cos(\pi/4)}\)

\(= \frac{\sqrt{2}/2}{\sqrt{2}/2} = 1\)

Example 3: tan(i)

z = i (purely imaginary)

\(\tan(i) = i\tanh(1)\)

\(\approx 0.762i\)

Example 4: tan(π/6)

z = π/6 ≈ 0.5236

\(\tan(\pi/6) = \frac{1}{\sqrt{3}}\)

\(\approx 0.577\)

Example 5: tan(π/2) - Pole!

z = π/2 ≈ 1.5708

\(\cos(\pi/2) = 0\)

Undefined (pole)!

Example 6: tan(1 + i)

z = 1 + i

\(\approx 0.272 + 1.084i\)

Tangent - Detailed Description

Definition

The tangent is the ratio of sine to cosine.

Quotient representation:
\[\tan(z) = \frac{\sin(z)}{\cos(z)}\]

For real numbers:
In a right triangle:
\[\tan(\alpha) = \frac{\text{Opposite}}{\text{Adjacent}}\]
Range: (-∞, ∞)
Period: π

For Complex Numbers

Calculation with z = x + yi:

\[\tan(z) = \frac{\sin(2x)}{\cos(2x)+\cosh(2y)} + i\frac{\sinh(2y)}{\cos(2x)+\cosh(2y)}\]

• Not bounded
• Poles at (2k+1)π/2

Important Properties

  • Periodicity: \(\tan(z + \pi) = \tan(z)\)
  • Odd function: \(\tan(-z) = -\tan(z)\)
  • Poles: at \(z = \frac{(2k+1)\pi}{2}\)
  • Derivative: \(\frac{d}{dz}\tan(z) = \frac{1}{\cos^2(z)}\)

Addition Formulas

Sum formula:
\[\tan(z \pm w) = \frac{\tan z \pm \tan w}{1 \mp \tan z \tan w}\]
Double angle:
\[\tan(2z) = \frac{2\tan(z)}{1-\tan^2(z)}\]

Relations to Other Functions

• \(\tan(z) = \frac{1}{\cot(z)}\) (reciprocal of cotangent)
• \(\tanh(iz) = i\tan(z)\) (hyperbolic ↔ trigonometric)
• \(\tan(iz) = i\tanh(z)\) (inverse)
• \(1 + \tan^2(z) = \frac{1}{\cos^2(z)} = \sec^2(z)\)

Poles

Caution: Singularities!

The tangent has poles (singularities) where the denominator becomes zero:

\[\tan(z) \text{ undefined for } z = \frac{(2k+1)\pi}{2}, \quad k \in \mathbb{Z}\]

Examples:
• tan(π/2) → ∞ (undefined)
• tan(3π/2) → ∞ (undefined)
• tan(-π/2) → -∞ (undefined)

Applications

Geometry
  • Slope calculation
  • Angle determination
  • Inclination angle
  • Triangle calculations
Physics
  • Projectile trajectory
  • Optics (refraction)
  • Oscillations
  • Phase analysis
Engineering
  • Road construction (gradients)
  • Navigation
  • Geodesy
  • Structural engineering
Period: π instead of 2π

Unlike sine and cosine, the tangent has a period of π (not 2π):

\[\tan(z + \pi) = \tan(z)\]

Reason: \(\tan(z + \pi) = \frac{\sin(z+\pi)}{\cos(z+\pi)} = \frac{-\sin(z)}{-\cos(z)} = \frac{\sin(z)}{\cos(z)} = \tan(z)\)
Both numerator and denominator change sign!

Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye