Angle (Argument) of Complex Numbers

Calculation of \(\arg(z)\) - the polar angle in the complex plane

Angle Calculator

Angle (Argument) of a Complex Number

The angle \(\phi = \arg(z)\) is the polar angle to the positive real axis, measured counterclockwise. It is calculated using \(\phi = \arctan(b/a)\), where the quadrant must be taken into account.

Complex Number z = a + bi
+
i
Calculation Result
Angle φ =

Graphical Representation

Angle as Vector

The angle φ is the polar angle from the positive real axis to the vector, measured counterclockwise.

Angle φ 45°
Range -180° to 180°
Radians -π to π


Formulas for the Angle of Complex Numbers

The angle (argument) \(\phi = \arg(z)\) of a complex number \(z = a + bi\) is the polar angle to the positive real axis in the Gaussian number plane.

Basic Formula
\[\phi = \arg(z) = \arctan\left(\frac{b}{a}\right)\]

⚠️ Quadrant must be considered!

Better Formula
\[\phi = \text{atan2}(b, a)\]

Automatically considers all quadrants

Quadrant Rules

Angle Calculation Based on Quadrant
Quadrant I (a>0, b>0)

\(\phi = \arctan(b/a)\)

Range: 0° to 90°

Example: z = 3+4i → φ ≈ 53.13°

Quadrant II (a<0, b>0)

\(\phi = 180° + \arctan(b/a)\)

Range: 90° to 180°

Example: z = -3+4i → φ ≈ 126.87°

Quadrant III (a<0, b<0)

\(\phi = -180° + \arctan(b/a)\)

Range: -180° to -90°

Example: z = -3-4i → φ ≈ -126.87°

Quadrant IV (a>0, b<0)

\(\phi = \arctan(b/a)\)

Range: -90° to 0°

Example: z = 3-4i → φ ≈ -53.13°

Special Cases (on the axes)
a>0, b=0
φ = 0°
a=0, b>0
φ = 90°
a<0, b=0
φ = ±180°
a=0, b<0
φ = -90°

Calculation Examples

Example: \(\arg(4+3i)\)
Step 1: Determine Quadrant

a = 4 > 0

b = 3 > 0

→ Quadrant I

Step 2: Calculate Arctan

\(\phi = \arctan\left(\frac{3}{4}\right)\)

\(= \arctan(0.75)\)

\(\approx 36.87°\)

Step 3: Convert to Radians

\(\phi = 36.87° \times \frac{\pi}{180°}\)

\(\approx 0.6435\) rad

\(\approx 0.64\) rad

Step 4: Verification

Polar form: \(z = 5e^{i\cdot 0.64}\)

Reverse calculation:

a = 5·cos(36.87°) ≈ 4 ✓

b = 5·sin(36.87°) ≈ 3 ✓

Example 2: \(\arg(1+i)\)

\(\arctan(1/1) = \arctan(1)\)

\(= 45° = \frac{\pi}{4}\)

Example 3: \(\arg(-1+i)\)

Quadrant II

\(180° + \arctan(1/-1)\)

\(= 135° = \frac{3\pi}{4}\)

Example 4: \(\arg(i)\)

z = 0+1i

On positive imaginary axis

\(= 90° = \frac{\pi}{2}\)

Angle of Complex Numbers - Detailed Description

Geometric Meaning

Every complex number can be represented as a vector in the Gaussian number plane.

Vector Representation:
Length: Magnitude \(|z|\)
Direction: Angle \(\phi = \arg(z)\)
Measurement: From positive real axis
Direction of rotation: Counterclockwise (positive)

Angle Ranges

Principal Value:

\[-\pi < \arg(z) \leq \pi\] \[-180° < \arg(z) \leq 180°\]

Positive angles: Counterclockwise
Negative angles: Clockwise

atan2 Function

The atan2 function automatically considers all quadrants:

atan2(b, a):
\[\text{atan2}(b, a) = \begin{cases} \arctan(b/a) & a > 0\\ \arctan(b/a) + \pi & a < 0, b \geq 0\\ \arctan(b/a) - \pi & a < 0, b < 0\\ +\pi/2 & a = 0, b > 0\\ -\pi/2 & a = 0, b < 0\\ \text{undefined} & a = 0, b = 0 \end{cases}\]

Important Properties

  • \(\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)\) (Addition)
  • \(\arg(z_1 / z_2) = \arg(z_1) - \arg(z_2)\) (Subtraction)
  • \(\arg(z^n) = n \cdot \arg(z)\) (Multiplication by n)
  • \(\arg(\overline{z}) = -\arg(z)\) (Conjugate)
  • \(\arg(1/z) = -\arg(z)\) (Reciprocal)

Important Note

Multivalued:
The angle is unique only up to multiples of \(2\pi\) (360°)!
\(\arg(z) = \phi + 2\pi k\) with \(k \in \mathbb{Z}\)
The principal value chooses \(k=0\).

Practical Applications

Technical Applications:
Electrical Engineering: Phase shift
Signal Processing: Frequency analysis
Control Engineering: Nyquist diagram
Navigation: Direction determination
Mathematical Applications:
Polar Coordinates: Angle transformation
Complex Functions: Argument principle
Fourier Transform: Phase
Vector Calculus: Angle calculation
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye