Angle (Argument) of Complex Numbers

Calculation of \(\arg(z)\) - the polar angle in the complex plane

Angle Calculator

Angle (Argument) of a Complex Number

The angle \(\phi = \arg(z)\) is the polar angle to the positive real axis, measured counterclockwise. It is calculated using \(\phi = \arctan(b/a)\), where the quadrant must be taken into account.

Complex Number z = a + bi
+
i
Calculation Result
Angle φ =

Graphical Representation

Angle as Vector

The angle φ is the polar angle from the positive real axis to the vector, measured counterclockwise.

Angle φ 45°
Range -180° to 180°
Radians -π to π

Formulas for the Angle of Complex Numbers

The angle (argument) \(\phi = \arg(z)\) of a complex number \(z = a + bi\) is the polar angle to the positive real axis in the Gaussian number plane.

Basic Formula
\[\phi = \arg(z) = \arctan\left(\frac{b}{a}\right)\]

⚠️ Quadrant must be considered!

Better Formula
\[\phi = \text{atan2}(b, a)\]

Automatically considers all quadrants

Quadrant Rules

Angle Calculation Based on Quadrant
Quadrant I (a>0, b>0)

\(\phi = \arctan(b/a)\)

Range: 0° to 90°

Example: z = 3+4i → φ ≈ 53.13°

Quadrant II (a<0, b>0)

\(\phi = 180° + \arctan(b/a)\)

Range: 90° to 180°

Example: z = -3+4i → φ ≈ 126.87°

Quadrant III (a<0, b<0)

\(\phi = -180° + \arctan(b/a)\)

Range: -180° to -90°

Example: z = -3-4i → φ ≈ -126.87°

Quadrant IV (a>0, b<0)

\(\phi = \arctan(b/a)\)

Range: -90° to 0°

Example: z = 3-4i → φ ≈ -53.13°

Special Cases (on the axes)
a>0, b=0
φ = 0°
a=0, b>0
φ = 90°
a<0, b=0
φ = ±180°
a=0, b<0
φ = -90°

Calculation Examples

Example: \(\arg(4+3i)\)
Step 1: Determine Quadrant

a = 4 > 0

b = 3 > 0

→ Quadrant I

Step 2: Calculate Arctan

\(\phi = \arctan\left(\frac{3}{4}\right)\)

\(= \arctan(0.75)\)

\(\approx 36.87°\)

Step 3: Convert to Radians

\(\phi = 36.87° \times \frac{\pi}{180°}\)

\(\approx 0.6435\) rad

\(\approx 0.64\) rad

Step 4: Verification

Polar form: \(z = 5e^{i\cdot 0.64}\)

Reverse calculation:

a = 5·cos(36.87°) ≈ 4 ✓

b = 5·sin(36.87°) ≈ 3 ✓

Example 2: \(\arg(1+i)\)

\(\arctan(1/1) = \arctan(1)\)

\(= 45° = \frac{\pi}{4}\)

Example 3: \(\arg(-1+i)\)

Quadrant II

\(180° + \arctan(1/-1)\)

\(= 135° = \frac{3\pi}{4}\)

Example 4: \(\arg(i)\)

z = 0+1i

On positive imaginary axis

\(= 90° = \frac{\pi}{2}\)

Angle of Complex Numbers - Detailed Description

Geometric Meaning

Every complex number can be represented as a vector in the Gaussian number plane.

Vector Representation:
Length: Magnitude \(|z|\)
Direction: Angle \(\phi = \arg(z)\)
Measurement: From positive real axis
Direction of rotation: Counterclockwise (positive)

Angle Ranges

Principal Value:

\[-\pi < \arg(z) \leq \pi\] \[-180° < \arg(z) \leq 180°\]

Positive angles: Counterclockwise
Negative angles: Clockwise

atan2 Function

The atan2 function automatically considers all quadrants:

atan2(b, a):
\[\text{atan2}(b, a) = \begin{cases} \arctan(b/a) & a > 0\\ \arctan(b/a) + \pi & a < 0, b \geq 0\\ \arctan(b/a) - \pi & a < 0, b < 0\\ +\pi/2 & a = 0, b > 0\\ -\pi/2 & a = 0, b < 0\\ \text{undefined} & a = 0, b = 0 \end{cases}\]

Important Properties

  • \(\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)\) (Addition)
  • \(\arg(z_1 / z_2) = \arg(z_1) - \arg(z_2)\) (Subtraction)
  • \(\arg(z^n) = n \cdot \arg(z)\) (Multiplication by n)
  • \(\arg(\overline{z}) = -\arg(z)\) (Conjugate)
  • \(\arg(1/z) = -\arg(z)\) (Reciprocal)

Important Note

Multivalued:
The angle is unique only up to multiples of \(2\pi\) (360°)!
\(\arg(z) = \phi + 2\pi k\) with \(k \in \mathbb{Z}\)
The principal value chooses \(k=0\).

Practical Applications

Technical Applications:
Electrical Engineering: Phase shift
Signal Processing: Frequency analysis
Control Engineering: Nyquist diagram
Navigation: Direction determination
Mathematical Applications:
Polar Coordinates: Angle transformation
Complex Functions: Argument principle
Fourier Transform: Phase
Vector Calculus: Angle calculation

More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye