Arc Sine (arcsin) for Complex Numbers

Calculation of arcsin(z) - the inverse function of sine

Arcsin Calculator

Arc Sine (arcsin)

The arc sine arcsin(z) is the inverse function of sine: If \(\sin(w) = z\), then \(w = \arcsin(z)\). For complex numbers, the function is multivalued and has infinitely many values.

Sine value z = a + bi
+
Imaginary part (b)
i
Calculation Result
arcsin(z) (principal value) =
The function is multivalued: All values are \(w + 2\pi k\) with \(k \in \mathbb{Z}\)

Arcsin - Properties

Formula
\[\arcsin(z) = -i\ln\left(iz + \sqrt{1-z^2}\right)\]

With complex logarithm and square root

Definition
\[\sin(\arcsin(z)) = z\]
Real numbers [-1, 1] → [-π/2, π/2]
Complex Multivalued
Important Properties
  • Inverse function of sin(z)
  • Multivalued: \(w + 2\pi k, k \in \mathbb{Z}\)
  • Principal value: \(\text{Re}(w) \in [-\pi/2, \pi/2]\)
  • \(\arcsin(-z) = -\arcsin(z)\) (odd function)
Relations
  • \(\arcsin(z) + \arccos(z) = \frac{\pi}{2}\)
  • \(\arcsin(z) = \frac{\pi}{2} - \arccos(z)\)
  • \(\sin(\arcsin(z)) = z\) (definition)
  • \(\arcsin(\sin(z)) = z + 2\pi k\)


Formulas for Arc Sine of Complex Numbers

The arc sine arcsin(z) is the inverse function of sine and is defined by the complex logarithm.

Main Formula
\[\arcsin(z) = -i\ln\left(iz + \sqrt{1-z^2}\right)\]

With \(\ln\) = complex logarithm

Alternative Form
\[\arcsin(z) = \frac{\pi}{2} - \arccos(z)\]

Relation to arccos

Arc Sine - Detailed Description

Definition and Meaning

The arc sine (also arcsin or asin) is the inverse function of the sine function.

Definition:
\[\sin(\arcsin(z)) = z\]
The arc sine returns the angle (in radians)
whose sine has the value z.

Notation:
arcsin(z), asin(z), or \(\sin^{-1}(z)\)

For Real Numbers

For real numbers \(x \in [-1, 1]\):

Range:

\[\arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\]

• arcsin(1) = π/2 ≈ 1.5708 rad = 90°
• arcsin(0) = 0
• arcsin(-1) = -π/2 ≈ -1.5708 rad = -90°

For Complex Numbers

For complex numbers, arcsin is multivalued:

Multivaluedness:
If \(w = \arcsin(z)\), then
\[w + 2\pi k \quad (k \in \mathbb{Z})\]
and
\[\pi - w + 2\pi k \quad (k \in \mathbb{Z})\]
are also valid solutions.

Principal value:
The principal value has \(\text{Re}(w) \in [-\pi/2, \pi/2]\)

Important Relations

  • \(\arcsin(z) + \arccos(z) = \frac{\pi}{2}\)
  • \(\arcsin(-z) = -\arcsin(z)\) (odd function)
  • \(\arcsin(\overline{z}) = \overline{\arcsin(z)}\)
  • \(\arcsin(z) = -i\ln(iz + \sqrt{1-z^2})\)

Caution

For complex z, \(|\arcsin(z)|\) can become arbitrarily large!
The function is only real for \(|z| \leq 1\).
For \(|z| > 1\), arcsin(z) is complex.

Geometric Meaning (Real Numbers)

Right Triangle:
In a right triangle:
\[\sin(\alpha) = \frac{\text{Opposite}}{\text{Hypotenuse}}\]
The arc sine calculates the angle α from this ratio:
\[\alpha = \arcsin\left(\frac{\text{Opposite}}{\text{Hypotenuse}}\right)\]
Example:
Opposite: a = 3
Hypotenuse: c = 5
\[\sin(\alpha) = \frac{3}{5} = 0.6\]
\[\alpha = \arcsin(0.6) \approx 0.6435 \text{ rad}\]
\[\alpha \approx 36.87°\]

Conversion Radians ↔ Degrees

Radians → Degrees
\[\text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi}\]

Example: 0.6435 rad ≈ 36.87°

Degrees → Radians
\[\text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°}\]

Example: 30° = π/6 ≈ 0.5236 rad

Calculation Examples

Example 1: arcsin(0.5)

Real number: z = 0.5

\(\arcsin(0.5) = \frac{\pi}{6}\)

≈ 0.5236 rad = 30°

Example 2: arcsin(1)

Maximum: z = 1

\(\arcsin(1) = \frac{\pi}{2}\)

≈ 1.5708 rad = 90°

Example 3: arcsin(-1)

Minimum: z = -1

\(\arcsin(-1) = -\frac{\pi}{2}\)

≈ -1.5708 rad = -90°

Example 4: arcsin(0.4 + 0.3i)

Complex number: z = 0.4 + 0.3i

Use formula:

\(\arcsin(z) = -i\ln(iz + \sqrt{1-z^2})\)

Result: see calculator above

Example 5: arcsin(2)

Outside [-1,1]: z = 2

\(\arcsin(2) = -i\ln(2i + \sqrt{-3})\)

≈ 1.571 - 1.317i (complex!)

Example 6: arcsin(i)

Imaginary unit: z = i

\(\arcsin(i) = -i\ln(i^2 + \sqrt{1-i^2})\)

≈ 0 + 0.881i

Special Values (real)
arcsin(0)
= 0
arcsin(√2/2)
= π/4 = 45°
arcsin(√3/2)
= π/3 = 60°
arcsin(1)
= π/2 = 90°

Applications

Geometry
  • Angle calculation in triangles
  • Projection on unit circle
  • Trajectories and paths
  • Coordinate transformations
Physics
  • Oscillations and waves
  • Pendulum motion
  • Projectile motion (launch angle)
  • Optics (Snell's law)
Mathematics
  • Complex analysis
  • Integral calculus
  • Differential equations
  • Fourier series
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye