Arc Tangent (arctan) for Complex Numbers

Calculation of arctan(z) - the inverse function of tangent

Arctan Calculator

Arc Tangent (arctan)

The arc tangent arctan(z) is the inverse function of tangent: If \(\tan(w) = z\), then \(w = \arctan(z)\). For complex numbers, the function is multivalued and has infinitely many values.

Tangent value z = a + bi
+
i
Calculation Result
arctan(z) (principal value) =
The function is multivalued: All values are \(w + \pi k\) with \(k \in \mathbb{Z}\)

Arctan - Properties

Formula
\[\arctan(z) = \frac{i}{2}\ln\left(\frac{i+z}{i-z}\right)\]

With complex logarithm

Definition
\[\tan(\arctan(z)) = z\]
Real numbers ℝ → (-π/2, π/2)
Complex Multivalued
Important Properties
  • Inverse function of tan(z)
  • Multivalued: \(w + \pi k, k \in \mathbb{Z}\)
  • Principal value: \(\text{Re}(w) \in (-\pi/2, \pi/2)\)
  • \(\arctan(-z) = -\arctan(z)\) (odd function)
Relations
  • \(\arctan(z) = \frac{1}{2i}\ln\left(\frac{1+iz}{1-iz}\right)\)
  • \(\tan(\arctan(z)) = z\) (definition)
  • \(\arctan(\tan(z)) = z + \pi k\)
  • \(\arctan(1/z) = \frac{\pi}{2} - \arctan(z)\) (for z>0)


Formulas for Arc Tangent of Complex Numbers

The arc tangent arctan(z) is the inverse function of tangent and is defined by the complex logarithm.

Main Formula
\[\arctan(z) = \frac{i}{2}\ln\left(\frac{i+z}{i-z}\right)\]

With \(\ln\) = complex logarithm

Alternative Form
\[\arctan(z) = \frac{1}{2i}\ln\left(\frac{1+iz}{1-iz}\right)\]

Equivalent representation

Arc Tangent - Detailed Description

Definition and Meaning

The arc tangent (also arctan or atan) is the inverse function of the tangent function.

Definition:
\[\tan(\arctan(z)) = z\]
The arc tangent returns the angle (in radians)
whose tangent has the value z.

Notation:
arctan(z), atan(z), or \(\tan^{-1}(z)\)

For Real Numbers

For real numbers \(x \in \mathbb{R}\):

Range:

\[\arctan(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\]

• arctan(∞) = π/2 ≈ 1.5708 rad = 90°
• arctan(0) = 0
• arctan(-∞) = -π/2 ≈ -1.5708 rad = -90°

For Complex Numbers

For complex numbers, arctan is multivalued:

Multivaluedness:
If \(w = \arctan(z)\), then
\[w + \pi k \quad (k \in \mathbb{Z})\]
are also valid solutions.

Principal value:
The principal value has \(\text{Re}(w) \in (-\pi/2, \pi/2)\)

Periodicity:
Period π (not 2π like sin/cos!)

Important Relations

  • \(\arctan(-z) = -\arctan(z)\) (odd function)
  • \(\arctan(1/z) = \frac{\pi}{2} - \arctan(z)\) (for z>0)
  • \(\arctan(\overline{z}) = \overline{\arctan(z)}\)
  • \(\arctan(z) = \arcsin\left(\frac{z}{\sqrt{1+z^2}}\right)\)

Singularities

Caution at z = ±i:
arctan(i) and arctan(-i) are undefined!
These are poles of the function.
The tangent is not injective at these values.

Geometric Meaning (Real Numbers)

Right Triangle:
In a right triangle:
\[\tan(\alpha) = \frac{\text{Opposite}}{\text{Adjacent}}\]
The arc tangent calculates the angle α:
\[\alpha = \arctan\left(\frac{\text{Opposite}}{\text{Adjacent}}\right)\]
Example:
Opposite: a = 4
Adjacent: b = 3
\[\tan(\alpha) = \frac{4}{3} \approx 1.333\]
\[\alpha = \arctan(1.333) \approx 0.9273 \text{ rad}\]
\[\alpha \approx 53.13°\]

atan2 Function

Two-Argument Arc Tangent

The atan2(y, x) function calculates \(\arctan(y/x)\) and automatically considers all four quadrants:

\[\text{atan2}(y, x) = \arctan\left(\frac{y}{x}\right) + \text{quadrant correction}\]

Range: (-π, π] (full circle!)
Advantage: Avoids division by zero and provides correct quadrant

Calculation Examples

Example 1: arctan(1)

Real number: z = 1

\(\arctan(1) = \frac{\pi}{4}\)

≈ 0.7854 rad = 45°

Example 2: arctan(√3)

z = √3 ≈ 1.732

\(\arctan(\sqrt{3}) = \frac{\pi}{3}\)

≈ 1.0472 rad = 60°

Example 3: arctan(0)

Zero point: z = 0

\(\arctan(0) = 0\)

= 0 rad = 0°

Example 4: arctan(0.4 + 0.3i)

Complex number: z = 0.4 + 0.3i

Use formula:

\(\arctan(z) = \frac{i}{2}\ln\left(\frac{i+z}{i-z}\right)\)

Result: see calculator above

Example 5: arctan(i) - Singularity!

z = i (imaginary unit)

\(\arctan(i)\) is undefined!

Pole of the function

Example 6: arctan(2i)

Purely imaginary: z = 2i

\(\arctan(2i) = \frac{i}{2}\ln\left(\frac{i+2i}{i-2i}\right)\)

≈ 0 + 0.549i

Special Values (real)
arctan(0)
= 0
arctan(1)
= π/4 = 45°
arctan(√3)
= π/3 = 60°
arctan(∞)
→ π/2 = 90°

Applications

Geometry & Navigation
  • Angle calculation from side ratio
  • Determining slope angle
  • Direction angle (atan2)
  • Polar coordinates
Physics & Engineering
  • Projectile trajectory (launch angle)
  • Impedance in AC circuits
  • Phase shift
  • Signal processing
Mathematics
  • Complex analysis
  • Integral calculus
  • Differential equations
  • Numerical methods
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye