Arc Tangent (arctan) for Complex Numbers
Calculation of arctan(z) - the inverse function of tangent
Arctan Calculator
Arc Tangent (arctan)
The arc tangent arctan(z) is the inverse function of tangent: If \(\tan(w) = z\), then \(w = \arctan(z)\). For complex numbers, the function is multivalued and has infinitely many values.
Arctan - Properties
Formula
With complex logarithm
Definition
Important Properties
- Inverse function of tan(z)
- Multivalued: \(w + \pi k, k \in \mathbb{Z}\)
- Principal value: \(\text{Re}(w) \in (-\pi/2, \pi/2)\)
- \(\arctan(-z) = -\arctan(z)\) (odd function)
Relations
- \(\arctan(z) = \frac{1}{2i}\ln\left(\frac{1+iz}{1-iz}\right)\)
- \(\tan(\arctan(z)) = z\) (definition)
- \(\arctan(\tan(z)) = z + \pi k\)
- \(\arctan(1/z) = \frac{\pi}{2} - \arctan(z)\) (for z>0)
Formulas for Arc Tangent of Complex Numbers
The arc tangent arctan(z) is the inverse function of tangent and is defined by the complex logarithm.
Main Formula
With \(\ln\) = complex logarithm
Alternative Form
Equivalent representation
Arc Tangent - Detailed Description
Definition and Meaning
The arc tangent (also arctan or atan) is the inverse function of the tangent function.
\[\tan(\arctan(z)) = z\]
The arc tangent returns the angle (in radians)
whose tangent has the value z.
Notation:
arctan(z), atan(z), or \(\tan^{-1}(z)\)
For Real Numbers
For real numbers \(x \in \mathbb{R}\):
Range:
• arctan(∞) = π/2 ≈ 1.5708 rad = 90°
• arctan(0) = 0
• arctan(-∞) = -π/2 ≈ -1.5708 rad = -90°
For Complex Numbers
For complex numbers, arctan is multivalued:
If \(w = \arctan(z)\), then
\[w + \pi k \quad (k \in \mathbb{Z})\]
are also valid solutions.
Principal value:
The principal value has \(\text{Re}(w) \in (-\pi/2, \pi/2)\)
Periodicity:
Period π (not 2π like sin/cos!)
Important Relations
- \(\arctan(-z) = -\arctan(z)\) (odd function)
- \(\arctan(1/z) = \frac{\pi}{2} - \arctan(z)\) (for z>0)
- \(\arctan(\overline{z}) = \overline{\arctan(z)}\)
- \(\arctan(z) = \arcsin\left(\frac{z}{\sqrt{1+z^2}}\right)\)
Singularities
Caution at z = ±i:
arctan(i) and arctan(-i) are undefined!
These are poles of the function.
The tangent is not injective at these values.
Geometric Meaning (Real Numbers)
In a right triangle:
\[\tan(\alpha) = \frac{\text{Opposite}}{\text{Adjacent}}\]
The arc tangent calculates the angle α:
\[\alpha = \arctan\left(\frac{\text{Opposite}}{\text{Adjacent}}\right)\]
Opposite: a = 4
Adjacent: b = 3
\[\tan(\alpha) = \frac{4}{3} \approx 1.333\]
\[\alpha = \arctan(1.333) \approx 0.9273 \text{ rad}\]
\[\alpha \approx 53.13°\]
atan2 Function
Two-Argument Arc Tangent
The atan2(y, x) function calculates \(\arctan(y/x)\) and automatically considers all four quadrants:
Range: (-π, π] (full circle!)
Advantage: Avoids division by zero and provides correct quadrant
Calculation Examples
Example 1: arctan(1)
Real number: z = 1
\(\arctan(1) = \frac{\pi}{4}\)
≈ 0.7854 rad = 45°
Example 2: arctan(√3)
z = √3 ≈ 1.732
\(\arctan(\sqrt{3}) = \frac{\pi}{3}\)
≈ 1.0472 rad = 60°
Example 3: arctan(0)
Zero point: z = 0
\(\arctan(0) = 0\)
= 0 rad = 0°
Example 4: arctan(0.4 + 0.3i)
Complex number: z = 0.4 + 0.3i
Use formula:
\(\arctan(z) = \frac{i}{2}\ln\left(\frac{i+z}{i-z}\right)\)
Result: see calculator above
Example 5: arctan(i) - Singularity!
z = i (imaginary unit)
\(\arctan(i)\) is undefined!
Pole of the function
Example 6: arctan(2i)
Purely imaginary: z = 2i
\(\arctan(2i) = \frac{i}{2}\ln\left(\frac{i+2i}{i-2i}\right)\)
≈ 0 + 0.549i
Special Values (real)
= 0
= π/4 = 45°
= π/3 = 60°
→ π/2 = 90°
Applications
Geometry & Navigation
- Angle calculation from side ratio
- Determining slope angle
- Direction angle (atan2)
- Polar coordinates
Physics & Engineering
- Projectile trajectory (launch angle)
- Impedance in AC circuits
- Phase shift
- Signal processing
Mathematics
- Complex analysis
- Integral calculus
- Differential equations
- Numerical methods
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •