Hyperbolic Sine (sinh) for Complex Numbers

Calculation of sinh(z) - hyperbolic function in the complex plane

Sinh Calculator

Hyperbolic Sine

The hyperbolic sine sinh(z) of a complex number z = x + yi combines hyperbolic and trigonometric functions. It grows exponentially and is closely related to the exponential function: \(\sinh(z) = \frac{e^z - e^{-z}}{2}\)

Argument z = x + yi
+
i
Calculation Result
sinh(z) =
sinh(z) grows exponentially for large |Re(z)| and can take very large values!

Sinh - Properties

Formula for Complex Numbers
\[\sinh(z) = \sinh(x)\cos(y) + i\cosh(x)\sin(y)\]

With z = x + yi

Exponential Representation
\[\sinh(z) = \frac{e^z - e^{-z}}{2}\]

Half-difference of exponential functions

Odd function sinh(-z) = -sinh(z)
Zero sinh(0) = 0
Important Properties
  • Odd function: sinh(-z) = -sinh(z)
  • \(\cosh^2(z) - \sinh^2(z) = 1\)
  • Zero: sinh(0) = 0
  • Grows exponentially for |z| → ∞
Relations
  • \(\sinh(iz) = i\sin(z)\)
  • \(\sinh(2z) = 2\sinh(z)\cosh(z)\)
  • \(\sinh(z \pm w) = \sinh z \cosh w \pm \cosh z \sinh w\)
  • \(\frac{d}{dz}\sinh(z) = \cosh(z)\)


Formulas for Hyperbolic Sine of Complex Numbers

The hyperbolic sine sinh(z) of a complex number z = x + yi combines hyperbolic functions (sinh, cosh) with trigonometric functions (cos, sin).

Cartesian Form
\[\sinh(x + yi) = \sinh(x)\cos(y) + i\cosh(x)\sin(y)\]

Real part: \(\sinh(x)\cos(y)\)
Imaginary part: \(\cosh(x)\sin(y)\)

Exponential Form
\[\sinh(z) = \frac{e^z - e^{-z}}{2}\]

Half-difference of exponential functions

Step-by-Step Example

Calculation: sinh(3 + 5i)
Step 1: Apply formula

z = 3 + 5i

x = 3 (real part)

y = 5 (imaginary part)

Step 2: Calculate real part

\(\text{Re} = \sinh(3) \cdot \cos(5)\)

\(= (10.0179) \cdot (0.28366)\)

\(\approx 2.842\)

Step 3: Calculate imaginary part

\(\text{Im} = \cosh(3) \cdot \sin(5)\)

\(= (10.0677) \cdot (-0.95892)\)

\(\approx -9.654\)

Step 4: Result

\(\sinh(3 + 5i) = \text{Re} + i\text{Im}\)

\(\approx 2.842 - 9.654i\)

Observation

The magnitude \(|\sinh(3 + 5i)| \approx 10.06\) shows the exponential growth. The hyperbolic sine grows exponentially with the real part x.

More Examples

Example 1: sinh(0)

z = 0

\(\sinh(0) = \frac{e^0 - e^{-0}}{2}\)

\(= \frac{1 - 1}{2} = 0\)

Example 2: sinh(1)

z = 1 (real)

\(\sinh(1) = \frac{e - e^{-1}}{2}\)

\(\approx 1.175\)

Example 3: sinh(i)

z = i (purely imaginary)

\(\sinh(i) = i\sin(1)\)

\(\approx 0.841i\)

Example 4: sinh(πi/2)

z = πi/2

\(\sinh(\pi i/2) = i\sin(\pi/2)\)

\(= i\)

Example 5: sinh(2 + i)

z = 2 + i

\(\text{Re} = \sinh(2)\cos(1) \approx 1.978\)
\(\text{Im} = \cosh(2)\sin(1) \approx 3.166\)

\(\approx 1.978 + 3.166i\)

Example 6: sinh(-2)

z = -2 (real, negative)

\(\sinh(-2) = -\sinh(2)\) (odd!)

\(\approx -3.627\)

Hyperbolic Sine - Detailed Description

Definition

The hyperbolic sine is one of the hyperbolic functions, analogous to the trigonometric sine.

Exponential representation:
\[\sinh(z) = \frac{e^z - e^{-z}}{2}\]

For real numbers:
\[\sinh(x) = \frac{e^x - e^{-x}}{2}\]
Range: (-∞, ∞)
Zero at x = 0: sinh(0) = 0

For Complex Numbers

Calculation with z = x + yi:

\[\sinh(z) = \sinh(x)\cos(y) + i\cosh(x)\sin(y)\]

• Real part: \(\sinh(x)\cos(y)\)
• Imaginary part: \(\cosh(x)\sin(y)\)
• Grows exponentially with |Re(z)|

Important Properties

  • Odd function: \(\sinh(-z) = -\sinh(z)\)
  • Hyperbolic identity: \(\cosh^2(z) - \sinh^2(z) = 1\)
  • Zero: sinh(0) = 0
  • Derivative: \(\frac{d}{dz}\sinh(z) = \cosh(z)\

Addition Formulas

Sum formula:
\[\sinh(z \pm w) = \sinh z \cosh w \pm \cosh z \sinh w\]
Double argument:
\[\sinh(2z) = 2\sinh(z)\cosh(z)\]

Relation to Trigonometric Functions

• \(\sinh(iz) = i\sin(z)\) (important connection!)
• \(\sin(iz) = i\sinh(z)\) (inverse)
• \(e^z = \cosh(z) + \sinh(z)\)
• \(e^{-z} = \cosh(z) - \sinh(z)\)

Behavior and Growth

Exponential Growth

For large |x|:

\[\sinh(x) \approx \frac{e^{x}}{2} \text{ sgn}(x)\]

The hyperbolic sine grows exponentially!
e.g.: sinh(5) ≈ 74.2, sinh(10) ≈ 11013.2

Zero Point

For real numbers:

\[\sinh(0) = 0\]

The only real zero!
sinh is strictly monotonically increasing

Applications

Mathematics
  • Hyperbolic geometry
  • Differential equations
  • Integral calculus
  • Complex analysis
Physics
  • Relativity theory
  • Heat equation
  • Wave equations
  • Electromagnetism
Engineering
  • Structural mechanics
  • Signal processing
  • Control engineering
  • Vibration analysis
Comparison: sinh vs. sin
sinh(x) - Hyperbolic Sine:
  • Odd function: sinh(-x) = -sinh(x)
  • Not periodic
  • Exponential growth
  • Range: (-∞, ∞)
sin(x) - Trigonometric Sine:
  • Odd function: sin(-x) = -sin(x)
  • Periodic: Period 2π
  • Oscillating
  • Range: [-1, 1]

Connection: \(\sinh(iz) = i\sin(z)\) and \(\sin(iz) = i\sinh(z)\)

Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye