Arc Cosine (arccos) for Complex Numbers

Calculation of arccos(z) - the inverse function of cosine

Arccos Calculator

Arc Cosine (arccos)

The arc cosine arccos(z) is the inverse function of cosine: If \(\cos(w) = z\), then \(w = \arccos(z)\). For complex numbers, the function is multivalued and has infinitely many values.

Cosine value z = a + bi
+
i
Calculation Result
arccos(z) (principal value) =
The function is multivalued: All values are \(w + 2\pi k\) with \(k \in \mathbb{Z}\)

Arccos - Properties

Formula
\[\arccos(z) = -i\ln\left(z + \sqrt{z^2-1}\right)\]

With complex logarithm and square root

Definition
\[\cos(\arccos(z)) = z\]
Real numbers [-1, 1] → [0, π]
Complex Multivalued
Important Properties
  • Inverse function of cos(z)
  • Multivalued: \(w + 2\pi k, k \in \mathbb{Z}\)
  • Principal value: \(\text{Re}(w) \in [0, \pi]\)
  • \(\arccos(-z) = \pi - \arccos(z)\)
Relations
  • \(\arccos(z) + \arcsin(z) = \frac{\pi}{2}\)
  • \(\arccos(z) = \frac{\pi}{2} - \arcsin(z)\)
  • \(\cos(\arccos(z)) = z\) (definition)
  • \(\arccos(\cos(z)) = z + 2\pi k\)


Formulas for Arc Cosine of Complex Numbers

The arc cosine arccos(z) is the inverse function of cosine and is defined by the complex logarithm.

Main Formula
\[\arccos(z) = -i\ln\left(z + \sqrt{z^2-1}\right)\]

With \(\ln\) = complex logarithm

Alternative Form
\[\arccos(z) = \frac{\pi}{2} - \arcsin(z)\]

Relation to arcsin

Arc Cosine - Detailed Description

Definition and Meaning

The arc cosine (also arccos or acos) is the inverse function of the cosine function.

Definition:
\[\cos(\arccos(z)) = z\]
The arc cosine returns the angle (in radians)
whose cosine has the value z.

Notation:
arccos(z), acos(z), or \(\cos^{-1}(z)\)

For Real Numbers

For real numbers \(x \in [-1, 1]\):

Range:

\[\arccos(x) \in [0, \pi]\]

• arccos(1) = 0
• arccos(0) = π/2 ≈ 1.5708
• arccos(-1) = π ≈ 3.1416

For Complex Numbers

For complex numbers, arccos is multivalued:

Multivaluedness:
If \(w = \arccos(z)\), then
\[w + 2\pi k \quad (k \in \mathbb{Z})\]
are also valid solutions.

Principal value:
The principal value has \(\text{Re}(w) \in [0, \pi]\)

Important Relations

  • \(\arccos(z) + \arcsin(z) = \frac{\pi}{2}\)
  • \(\arccos(z) = \frac{\pi}{2} - \arcsin(z)\)
  • \(\cos(\arccos(z)) = z\) (definition)
  • \(\arccos(\cos(z)) = z + 2\pi k\)

Caution

For complex z, \(|\arccos(z)|\) can become arbitrarily large!
The function is only real for \(|z| \leq 1\).
For \(|z| > 1\), arccos(z) is complex.

Geometric Meaning (Real Numbers)

Right Triangle:
In a right triangle:
\[\cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}}\]
The arc cosine calculates the angle α from this ratio:
\[\alpha = \arccos\left(\frac{\text{Adjacent}}{\text{Hypotenuse}}\right)\]
Example:
Adjacent: b = 6
Hypotenuse: c = 20
\[\cos(\alpha) = \frac{6}{20} = 0.3\]
\[\alpha = \arccos(0.3) \approx 1.266 \text{ rad}\]
\[\alpha \approx 72.54°\]

Conversion Radians ↔ Degrees

Radians → Degrees
\[\text{Degrees} = \frac{\text{Radians} \cdot 180°}{\pi}\]

Example: 1.266 rad ≈ 72.54°

Degrees → Radians
\[\text{Radians} = \frac{\text{Degrees} \cdot \pi}{180°}\]

Example: 90° = π/2 ≈ 1.5708 rad

Calculation Examples

Example 1: arccos(0.5)

Real number: z = 0.5

\(\arccos(0.5) = \frac{\pi}{3}\)

≈ 1.047 rad = 60°

Example 2: arccos(1)

Maximum: z = 1

\(\arccos(1) = 0\)

= 0 rad = 0°

Example 3: arccos(-1)

Minimum: z = -1

\(\arccos(-1) = \pi\)

≈ 3.142 rad = 180°

Example 4: arccos(0.4 + 0.3i)

Complex number: z = 0.4 + 0.3i

Use formula:

\(\arccos(z) = -i\ln(z + \sqrt{z^2-1})\)

Result: see calculator above

Example 5: arccos(2)

Outside [-1,1]: z = 2

\(\arccos(2) = -i\ln(2 + \sqrt{3})\)

≈ 0 - 1.317i (complex!)

Example 6: arccos(i)

Imaginary unit: z = i

\(\arccos(i) = \frac{\pi}{2} - i\ln(1+\sqrt{2})\)

≈ 1.571 - 0.881i

Applications

Geometry
  • Angle calculation in triangles
  • Determining vector angles
  • Dot product applications
  • 3D geometry
Physics
  • Wave mechanics
  • Oscillations
  • Electrical engineering (impedance)
  • Optics (refraction angle)
Mathematics
  • Complex analysis
  • Integral calculus
  • Differential equations
  • Fourier transformation
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye