Power of Complex Numbers

Calculation of \(z^w\) with complex base and complex exponent

Power Calculator

Power of Complex Numbers

The power \(z^w\) is calculated by \(z^w = e^{w \ln z}\). Both base and exponent can be complex.

Base z = a + bi
+
i
Exponent w = c + di
+
i
For real exponents, leave the imaginary part (d) empty or set it to 0
Calculation Result
zw =

Power - Properties

General Formula
\[z^w = e^{w \ln z}\]

Conversion to exponential function and logarithm

For real exponents
\[z^n = r^n(\cos(n\phi) + i\sin(n\phi))\]

With polar form \(z = re^{i\phi}\)

Base z = a + bi
Exponent w = c + di
Important Properties
  • \(z^0 = 1\) (for \(z \neq 0\))
  • \(z^1 = z\)
  • \(z^{-1} = \frac{1}{z}\)
  • \((z^{w_1})^{w_2} \neq z^{w_1 w_2}\) (in general!)
Multivaluedness

For complex exponents, \(z^w\) is multivalued due to the multivaluedness of the logarithm! This calculator returns the principal value.

Special Cases
  • Integer exponents: \(z^n\) (unique)
  • Rational exponents: \(z^{p/q}\) (q values)
  • Real exponents: \(z^r\) (infinitely many values)
  • Complex exponents: \(z^w\) (infinitely many values)


Formulas for Power of Complex Numbers

The power of a complex number with complex exponent is defined through the exponential function and the logarithm.

General Definition
\[z^w = e^{w \ln z}\]

Using the principal value of the complex logarithm

With Polar Form
\[z^w = r^c e^{-d\phi} \cdot e^{i(c\phi + d\ln r)}\]

For \(z = re^{i\phi}\) and \(w = c + di\)

Calculation Examples

Example 1: \((1+i)^2\) (real exponent)

Method 1: Expansion

\((1+i)^2 = (1+i)(1+i)\)

\(= 1 + i + i + i^2\)

\(= 1 + 2i - 1 = 2i\)

Method 2: Polar Form

\(1+i = \sqrt{2}e^{i\pi/4}\)

\((1+i)^2 = (\sqrt{2})^2 e^{i\cdot 2\pi/4}\)

\(= 2e^{i\pi/2} = 2i\) ✓

Example 2: \(i^i\) (complex exponent)

Calculation:

\(i = e^{i\pi/2}\)

\(\ln(i) = i\pi/2\)

\(i^i = e^{i \ln(i)} = e^{i \cdot i\pi/2}\)

\(= e^{-\pi/2}\)

\(\approx 0.208\) (real!)

Example 3: \(2^{1+i}\)

Calculation:

\(\ln(2) \approx 0.693\)

\(2^{1+i} = e^{(1+i)\ln 2}\)

\(= e^{\ln 2 + i\ln 2}\)

\(= e^{\ln 2} \cdot e^{i\ln 2}\)

\(= 2 \cdot (\cos(0.693) + i\sin(0.693))\)

\(\approx 1.54 + 1.28i\)

Example 4: \((1+i)^{1+i}\)

Calculation:

\(1+i = \sqrt{2}e^{i\pi/4}\)

\(\ln(1+i) = \ln\sqrt{2} + i\pi/4\)

\(\approx 0.347 + 0.785i\)

\((1+i)^{1+i} = e^{(1+i)(0.347+0.785i)}\)

\(= e^{(0.347-0.785) + i(0.785+0.347)}\)

\(\approx 0.274 + 0.584i\)

Special Cases and Computation Rules

Integer Exponents

For integer \(n\), \(z^n\) is unique:
\(z^2 = z \cdot z\)
\(z^3 = z \cdot z \cdot z\)
\(z^{-n} = \frac{1}{z^n}\)

With polar form:
\(z^n = r^n e^{in\phi}\)

Roots (rational exponents)

\(z^{1/n} = \sqrt[n]{z}\) has \(n\) different values:
\[z_k = \sqrt[n]{r} \cdot e^{i(\phi + 2\pi k)/n}\] with \(k = 0, 1, ..., n-1\)

This calculator returns the principal value (k=0)

Caution with computation rules!

NOT always valid:
❌ \(z^{w_1 + w_2} = z^{w_1} \cdot z^{w_2}\)
❌ \((z^{w_1})^{w_2} = z^{w_1 w_2}\)
❌ \((z_1 z_2)^w = z_1^w \cdot z_2^w\)

Valid only for:
✅ Integer exponents
✅ Positive real bases

Multivaluedness

The complex logarithm is multivalued:
\[\ln z = \ln|z| + i(\arg z + 2\pi k)\] with \(k \in \mathbb{Z}\)

Therefore: \(z^w = e^{w(\ln|z| + i(\arg z + 2\pi k))}\)
has infinitely many values for non-integer w!

Power of Complex Numbers - Detailed Description

Definition

The power of a complex number with complex exponent is defined via the exponential function and the logarithm:

\[z^w = e^{w \ln z}\]
Steps:
1. Logarithm of base: \(\ln z\)
2. Multiplication with exponent: \(w \ln z\)
3. Apply exponential function: \(e^{w \ln z}\)

Calculation with Polar Form

In polar form, the calculation is often simpler:

Let \(z = re^{i\phi}\) and \(w = c + di\), then:

\[z^w = r^{c+di} e^{i\phi(c+di)}\] \[= r^c e^{-d\phi} \cdot e^{i(c\phi + d\ln r)}\]

Magnitude: \(r^c e^{-d\phi}\)
Argument: \(c\phi + d\ln r\)

Practical Applications

Complex powers find applications in many fields:

Applications:
Fractals: Mandelbrot set, Julia sets
Quantum mechanics: energy eigenvalues
Signal processing: frequency analysis
Differential equations: complex solutions

Visualization

The power function \(f(z) = z^w\) for fixed w:

  • Integer w: \(w\)-fold rotation and scaling
  • Rational w = p/q: q-sheeted Riemann surface
  • Real w: spiral in the complex plane
  • Complex w: complex deformation

Principal Value

Since the logarithm is multivalued, we define the principal value of the power by using the principal value of the logarithm:
\[\text{Log}(z) = \ln|z| + i\arg(z)\] with \(-\pi < \arg(z) \leq \pi\)

Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye