Power of Complex Numbers

Calculation of \(z^w\) with complex base and complex exponent

Power Calculator

Power of Complex Numbers

The power \(z^w\) is calculated by \(z^w = e^{w \ln z}\). Both base and exponent can be complex.

Base z = a + bi
+
i
Exponent w = c + di
+
i
For real exponents, leave the imaginary part (d) empty or set it to 0
Calculation Result
zw =

Power - Properties

General Formula
\[z^w = e^{w \ln z}\]

Conversion to exponential function and logarithm

For real exponents
\[z^n = r^n(\cos(n\phi) + i\sin(n\phi))\]

With polar form \(z = re^{i\phi}\)

Base z = a + bi
Exponent w = c + di
Important Properties
  • \(z^0 = 1\) (for \(z \neq 0\))
  • \(z^1 = z\)
  • \(z^{-1} = \frac{1}{z}\)
  • \((z^{w_1})^{w_2} \neq z^{w_1 w_2}\) (in general!)
Multivaluedness

For complex exponents, \(z^w\) is multivalued due to the multivaluedness of the logarithm! This calculator returns the principal value.

Special Cases
  • Integer exponents: \(z^n\) (unique)
  • Rational exponents: \(z^{p/q}\) (q values)
  • Real exponents: \(z^r\) (infinitely many values)
  • Complex exponents: \(z^w\) (infinitely many values)

Formulas for Power of Complex Numbers

The power of a complex number with complex exponent is defined through the exponential function and the logarithm.

General Definition
\[z^w = e^{w \ln z}\]

Using the principal value of the complex logarithm

With Polar Form
\[z^w = r^c e^{-d\phi} \cdot e^{i(c\phi + d\ln r)}\]

For \(z = re^{i\phi}\) and \(w = c + di\)

Calculation Examples

Example 1: \((1+i)^2\) (real exponent)

Method 1: Expansion

\((1+i)^2 = (1+i)(1+i)\)

\(= 1 + i + i + i^2\)

\(= 1 + 2i - 1 = 2i\)

Method 2: Polar Form

\(1+i = \sqrt{2}e^{i\pi/4}\)

\((1+i)^2 = (\sqrt{2})^2 e^{i\cdot 2\pi/4}\)

\(= 2e^{i\pi/2} = 2i\) ✓

Example 2: \(i^i\) (complex exponent)

Calculation:

\(i = e^{i\pi/2}\)

\(\ln(i) = i\pi/2\)

\(i^i = e^{i \ln(i)} = e^{i \cdot i\pi/2}\)

\(= e^{-\pi/2}\)

\(\approx 0.208\) (real!)

Example 3: \(2^{1+i}\)

Calculation:

\(\ln(2) \approx 0.693\)

\(2^{1+i} = e^{(1+i)\ln 2}\)

\(= e^{\ln 2 + i\ln 2}\)

\(= e^{\ln 2} \cdot e^{i\ln 2}\)

\(= 2 \cdot (\cos(0.693) + i\sin(0.693))\)

\(\approx 1.54 + 1.28i\)

Example 4: \((1+i)^{1+i}\)

Calculation:

\(1+i = \sqrt{2}e^{i\pi/4}\)

\(\ln(1+i) = \ln\sqrt{2} + i\pi/4\)

\(\approx 0.347 + 0.785i\)

\((1+i)^{1+i} = e^{(1+i)(0.347+0.785i)}\)

\(= e^{(0.347-0.785) + i(0.785+0.347)}\)

\(\approx 0.274 + 0.584i\)

Special Cases and Computation Rules

Integer Exponents

For integer \(n\), \(z^n\) is unique:
\(z^2 = z \cdot z\)
\(z^3 = z \cdot z \cdot z\)
\(z^{-n} = \frac{1}{z^n}\)

With polar form:
\(z^n = r^n e^{in\phi}\)

Roots (rational exponents)

\(z^{1/n} = \sqrt[n]{z}\) has \(n\) different values:
\[z_k = \sqrt[n]{r} \cdot e^{i(\phi + 2\pi k)/n}\] with \(k = 0, 1, ..., n-1\)

This calculator returns the principal value (k=0)

Caution with computation rules!

NOT always valid:
❌ \(z^{w_1 + w_2} = z^{w_1} \cdot z^{w_2}\)
❌ \((z^{w_1})^{w_2} = z^{w_1 w_2}\)
❌ \((z_1 z_2)^w = z_1^w \cdot z_2^w\)

Valid only for:
✅ Integer exponents
✅ Positive real bases

Multivaluedness

The complex logarithm is multivalued:
\[\ln z = \ln|z| + i(\arg z + 2\pi k)\] with \(k \in \mathbb{Z}\)

Therefore: \(z^w = e^{w(\ln|z| + i(\arg z + 2\pi k))}\)
has infinitely many values for non-integer w!

Power of Complex Numbers - Detailed Description

Definition

The power of a complex number with complex exponent is defined via the exponential function and the logarithm:

\[z^w = e^{w \ln z}\]
Steps:
1. Logarithm of base: \(\ln z\)
2. Multiplication with exponent: \(w \ln z\)
3. Apply exponential function: \(e^{w \ln z}\)

Calculation with Polar Form

In polar form, the calculation is often simpler:

Let \(z = re^{i\phi}\) and \(w = c + di\), then:

\[z^w = r^{c+di} e^{i\phi(c+di)}\] \[= r^c e^{-d\phi} \cdot e^{i(c\phi + d\ln r)}\]

Magnitude: \(r^c e^{-d\phi}\)
Argument: \(c\phi + d\ln r\)

Practical Applications

Complex powers find applications in many fields:

Applications:
Fractals: Mandelbrot set, Julia sets
Quantum mechanics: energy eigenvalues
Signal processing: frequency analysis
Differential equations: complex solutions

Visualization

The power function \(f(z) = z^w\) for fixed w:

  • Integer w: \(w\)-fold rotation and scaling
  • Rational w = p/q: q-sheeted Riemann surface
  • Real w: spiral in the complex plane
  • Complex w: complex deformation

Principal Value

Since the logarithm is multivalued, we define the principal value of the power by using the principal value of the logarithm:
\[\text{Log}(z) = \ln|z| + i\arg(z)\] with \(-\pi < \arg(z) \leq \pi\)


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye