Regular Prism Calculation
Online calculator and formulas for calculating a regular prism
This function calculates the height or volume of a regular regular prism.
To calculate, enter a side length of the base and the volume or height. Then click on the 'Calculate' button.
|
Formula for regular prism
The (\(\small{n}\)) stands for the number of corners.
Surface (\(\small{S}\))
\(\displaystyle S = \frac{2 \cdot n \cdot a^2}{ 4 \cdot tan\left(\frac{π}{n}\right)} + n \cdot a \cdot h\)
Base area (\(\small{A}\))
\(\displaystyle A = \frac{n \cdot a^2}{ 4 \cdot tan\left(\frac{π}{n}\right)}\)
Height (\(\small{h}\))
\(\displaystyle h= \frac{4 \cdot V \cdot tan\left(\frac{π}{n}\right)}{n \cdot a^2}\)
Volume (\(\small{V}\))
\(\displaystyle V= \frac{n \cdot h \cdot a^2}{ 4 \cdot tan\left(\frac{π}{n}\right)}\)
Cuboid
•
Square Pillar
•
Antiprism
•
Hexagonal prism
•
Triangular prism
•
Regular prism
•
Oblique prism
•
Ramp
•
Anticube
•
Wedge
•
Right Wedge
•
Rhombohedron
•
Parallelepiped
•
Tetrahedron, irregular
•
Tetragonal Trapezohedron
•
Pentagonal Trapezohedron
•
Prismatoid
•
Stellated Octahedron
•
Stellated Dodecahedron
•
Great Stellated Dodecahedron
•
Great Dodecahedron
Tetrahedron • Cube • Octahedron • Dodecahedron • Icosahedron
Tetrahedron • Cube • Octahedron • Dodecahedron • Icosahedron
|