Regular Prism Calculation

Online calculator and formulas for calculating a regular prism


This function calculates the height or volume of a regular regular prism.

To calculate, enter a side length of the base and the volume or height. Then click on the 'Calculate' button.


Regular Prism Calculation

 Input
Number of vertices (n)
Base side length (a)
Decimal places
 Results
Height
Surface
Base area
Regular Prism

Formula for regular prism


The (\(\small{n}\)) stands for the number of corners.

Surface (\(\small{S}\))

\(\displaystyle S = \frac{2 \cdot n \cdot a^2}{ 4 \cdot tan\left(\frac{π}{n}\right)} + n \cdot a \cdot h\)

Base area (\(\small{A}\))

\(\displaystyle A = \frac{n \cdot a^2}{ 4 \cdot tan\left(\frac{π}{n}\right)}\)

Height (\(\small{h}\))

\(\displaystyle h= \frac{4 \cdot V \cdot tan\left(\frac{π}{n}\right)}{n \cdot a^2}\)

Volume (\(\small{V}\))

\(\displaystyle V= \frac{n \cdot h \cdot a^2}{ 4 \cdot tan\left(\frac{π}{n}\right)}\)

Cuboid Square Pillar Antiprism Hexagonal prism Triangular prism Regular prism Oblique prism Ramp Anticube Wedge Right Wedge RhombohedronParallelepipedTetrahedron, irregularTetragonal TrapezohedronPentagonal TrapezohedronPrismatoidStellated Octahedron Stellated DodecahedronGreat Stellated DodecahedronGreat Dodecahedron
TetrahedronCubeOctahedronDodecahedron Icosahedron


Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?