Empirische Verteilungsfunktion berechnen
Online Rechner zur Berechnung der Empirische Verteilungsfunktion (CDF) einer Datenreihe
Auf dieser Seite wird die Empirische Verteilung einer Datenreihe berechnet.
Zur Berechnung geben Sie eine Reihe von Zahlen und den Vergleichswert ein. Dann klicken Sie den Button 'Rechnen'.
Eingabeformat
Die Daten können als Zahlenreihe, durch Semikolon oder Leerzeichen getrennt, eingegeben werden. Die Eingabe als Liste (ein Wert pro Zeile) eignet sich besonders wenn Daten aus Dateien, z.B. Spalte einer Excel Datei, per Kopieren und Einfügen, eingegeben werden.
|
Formeln und Beispiele
Die empirische Verteilung (Wahrscheinlichkeitsverteilung) ist in der beschreibenden Statistik ein Wert, der beschreibt wie hoch der Anteil der Werte ist, die kleiner oder gleich dem Vergleichswert sind. Das Resultat liegt zwischen 0 und 1 einschließlich.
Definition der empirische Verteilungsfunktion
Die empirische Verteilungsfunktion ordnet jeder reellen Zahl den Anteil der Stichprobenwerte zu, die kleiner oder gleich dieser Zahl sind. Wenn die Beobachtungswerte in der Stichprobe (die Stichprobenwerte) als \(x_1, x_2, \ldots, x_n\) gegeben sind, dann ist die empirische Verteilungsfunktion definiert als:
\(\displaystyle F_n(t)=\frac{Anzahl \ der \ Elemente ≤ t}{n} \ \ = \frac{1}{n}\sum_{i-1}^{n} 1_{x_i} ≤t \)
Beispiel
Um die empirische Verteilungsfunktion zu berechnen, ordnet man die Beobachtungswerte aufsteigend und bestimmt die relative Häufigkeit, mit der sie kleiner oder gleich einer bestimmten Zahl sind.
In diesem Beispiel wird die Verteilung für die folgende Zahlenreihe mit 10 Zahlen gesucht
\(\displaystyle 2, 5, 4, 8, 3, 7, 9, 3, 1, 6 \)
Als Vergleichswert wird 5 angenommen. Also werden die Zahlen gesucht, deren Wert 5 oder kleiner ist.
\(\displaystyle \color{#44F}{2, 5, 4}, 8, \color{#44F}{3}, 7, 9, \color{#44F}{3, 1}, 6 \)
Von den 10 Zahlen trifft das auf 6 Zahlen zu.
Die Empirische Verteilung ist \(\displaystyle \frac{6}{10}= 0.6 \) oder \(60\%\)
Die empirische Verteilungsfunktion hilft, die Verteilung der Daten zu beschreiben und gibt Aufschluss über die Wahrscheinlichkeit, dass ein Messwert höchstens einen bestimmten Wert annimmt.
Wahrscheinlichkeiten
Geburtstagsparadoxon • Satz von Bayes • Zentraler GrenzwertsatzStatistik Funktionen
Arithmetisches Mittel (Durchschnitt) • Empirische Inverse Verteilungsfunktion • Empirische Verteilungsfunktion • Five-Number Summary • Empirische inverse Verteilungsfunktion CDF • Geometrisches Mittel • Gepoolte Standardabweichung • Gepoolte Varianz • Harmonisches Mittel • Kontraharmonisches Mittel • Kovarianz • Kurtosis (Wölbung) • Log-Geometrisches Mittel • Median • Modus • Oberes Quartil • Skewness (Statistische Schiefe) • Standardabweichung • Unteres Quartil • VarianzStatistik Distanz Funktionen
Dice Index • Hellingerabstand • Jaccard Index • Mittlerer Absoluter Fehler • Mittlerer Quadratischer Fehler • Summe der Absoluten Differenz • Summe der AbweichungsquadrateKombinatorik Funktionen
Kombinationen ohne Wiederholung • Kombinationen mit Wiederholung • Permutationen ohne Wiederholung • Produktregel • Variationen ohne Wiederholung • Variationen mit Wiederholung • Aktivitäten Auswahl Problem
|