Binary Exclusive OR Operation

Exclusive OR linking the bits of two integers

Bitwise XOR Calculator

Bitwise XOR Operation

This function performs a binary exclusive OR operation on the bits of two integers. The result bit is 1 when the input bits are different, and 0 when they are the same.

Example: F0 (hex) = 240 (dec) = 11110000 (binary)
Example: 42 (hex) = 66 (dec) = 01000010 (binary)
Results of XOR Operation
Binary:
Octal:
Decimal:
Hexadecimal:

XOR Operation Visualization

Example: F0 XOR 42 = B2
1st Number: 1 1 1 1 0 0 0 0 (F0)
2nd Number: 0 1 0 0 0 0 1 0 (42)
XOR Result: 1 0 1 1 0 0 1 0 (B2)
B2 (hex) = 178 (dec)
XOR Truth Table
A
B
A ⊕ B

0
0
0
0
1
1
1
0
1
1
1
0
XOR Properties
  • Result is 1 when bits are different
  • Result is 0 when bits are the same
  • Commutative: A ⊕ B = B ⊕ A
  • Self-inverse: A ⊕ A = 0

Mathematical Foundations of Bitwise XOR Operation

The bitwise XOR operation is applied bitwise to the corresponding positions:

Mathematical Definition
\[C_i = A_i \oplus B_i\]

For each bit position i, exclusive OR is applied

Bitwise Application
\[\text{Result} = A \oplus B\]

Simultaneous XOR operation on all corresponding bit pairs

XOR Operation Formulas and Examples

General XOR Formula
\[\text{XOR}(A, B) = A \oplus B\]

Bitwise exclusive OR operation of two binary numbers A and B

Step-by-Step Example: F0 XOR 42

1st Number A: F0₁₆ = 240₁₀ = 11110000₂

2nd Number B: 42₁₆ = 66₁₀ = 01000010₂

Position: 76543210 (from right)

XOR Operation:

Position 7: 1 ⊕ 0 = 1

Position 6: 1 ⊕ 1 = 0

Position 5: 1 ⊕ 0 = 1

Position 4: 1 ⊕ 0 = 1

Position 3: 0 ⊕ 0 = 0

Position 2: 0 ⊕ 0 = 0

Position 1: 0 ⊕ 1 = 1

Position 0: 0 ⊕ 0 = 0

Result: 10110010₂ = 178₁₀ = B2₁₆

More XOR Examples
FF XOR 00:
A: 11111111₂ (255)
B: 00000000₂ (0)
Result: 11111111₂ (255)
AA XOR 55:
A: 10101010₂ (170)
B: 01010101₂ (85)
Result: 11111111₂ (255)
Mathematical Properties of XOR Operation
Commutative Law:
\[A \oplus B = B \oplus A\]

Order of operands is arbitrary

Associative Law:
\[(A \oplus B) \oplus C = A \oplus (B \oplus C)\]

Parentheses are arbitrary

Identity Element:
\[A \oplus 0 = A\]

XOR with 0 changes nothing

Self-Inverse:
\[A \oplus A = 0\]

XOR with itself = 0

XOR Reference

Standard Example
F0 XOR 42 = B2 11110000 ⊕ 01000010 = 10110010 Different bits = 1
XOR Truth Table
A
B
A⊕B

0
0
0
0
1
1
1
0
1
1
1
0
Bitwise Operators

^: bitwise XOR

|: bitwise OR

&: bitwise AND

~: bitwise NOT

<<,>>: bit shift

Common Applications

Toggle bits: x ^ mask

Encryption: data ^ key

Checksum: byte1 ^ byte2

Swap values: a^=b; b^=a; a^=b;

Bitwise XOR Operation - Detailed Description

XOR Operation Fundamentals

The bitwise exclusive OR (XOR) is applied to the bit sequences of two integers. The bits at the same position are linked with a logical XOR operation. The result bit is 1 if the two bits are different, and 0 if they are the same.

XOR Rule:
• 0 ⊕ 0 = 0 (both bits are 0)
• 0 ⊕ 1 = 1 (bits are different)
• 1 ⊕ 0 = 1 (bits are different)
• 1 ⊕ 1 = 0 (both bits are 1)

Processing Logic

When bits are different, the result bit is set to 1. When bits are the same, the result is 0. XOR is particularly useful for toggling bits, encryption, and detecting differences between data.

Processing Steps

1. Convert both numbers to binary representation
2. Process bit by bit from right to left
3. Apply XOR operation to corresponding bit pairs
4. Convert result to desired format

Practical Applications

Bitwise XOR operations are essential in cryptography, data integrity checking, and algorithmic programming. They provide unique properties that make them invaluable for many computational tasks.

Application Areas:
• Encryption and decryption
• Error detection and correction
• Bit toggling and masking
• Hash functions and checksums

Mathematical Properties

The XOR operation has unique mathematical properties including being its own inverse, making it particularly useful for reversible operations like encryption where A ⊕ B ⊕ B = A.

Important Properties
  • Commutative: A ⊕ B = B ⊕ A
  • Associative: (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
  • Identity element: A ⊕ 0 = A
  • Self-inverse: A ⊕ A = 0

Practical XOR Operation Examples

Bit Toggling

Scenario: Toggle specific bits

Data: 11001100₂

Mask: 00110011₂

Result: 11111111₂ (toggled)

Simple Encryption

Scenario: XOR cipher

Message: 01001000₂ (H)

Key: 10101010₂

Encrypted: 11100010₂

Checksum

Scenario: Data integrity

Byte 1: 11110000₂

Byte 2: 10101010₂

Checksum: 01011010₂

Programming Tips
  • Toggle bits: value ^= mask
  • Swap variables: a^=b; b^=a; a^=b;
  • Simple cipher: encrypted = data ^ key
  • Find unique: result = a ^ b ^ c
  • Parity check: odd = (data ^ (data >> 4)) & 1
  • Performance: XOR is very fast


IT Functions

Decimal, Hex, Bin, Octal conversionShift bits left or rightSet a bitClear a bitBitwise ANDBitwise ORBitwise exclusive OR

Special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta

Hyperbolic functions

ACoshACothACschASechASinhATanhCoshCothCschSechSinhTanh

Trigonometrische Funktionen

ACosACotACscASecASinATanCosCotCscSecSinSincTanDegree to RadianRadian to Degree